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ABSTRACT: A formal syntactic and semantic model is presented for
'recursive definitions' which are generalizations of those
found in LISP for example. Such recursive definitions can
have two classcs of fixpoints, the strong fixpoints and the
weak fixpoints, and also possess a class of computed partial
functions.

Relations between these classes are presented: fixpoints are
shown to be extensions of computed functions. More precisely,
strong fixpoints are shown to be extensions of computed
functions when the computations may involve '"call by name'
substitutions; weak fixpoints are shown to be extensions ot
computed functions when the computation only involves 'call

by value" substitutions. The Church-Rosser property for
recursive definitions with fixpoints also fo!lows from these
results,

Then conditions are given on the recursive detinitions to
ensure that they possess least fixpoints (of hotn classcs),
and computation rules are given for computing these two

fixpoints: the 'tull' computation rule, which lcads to the
least strong riupoint, and the 'standard inncrmost' computation
rule, which leads to the least weak fixpoint. A general class

of computation rules, called 'sate innermost', also lead to the
latter fixpoint. The "lcttmost innermost' rule is a special
case of those, tur the ISP reeursive definitions.
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ADVICE TO THE READER

The essence of the material in this work is presented
and discussed in Chapter 1. Chapters 2 - 5 contain detailed
and formal definitions, together with all the proofs of the
results. They are primarily intended to be reference material.
The conclusion contains some remarks on possible further research

related to this work.
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1.1 Introduction

This dissertation presents a svntactic and semantic model tfor 'recursive
definitions' which are generualizations of those Introduced in McCarthy
(196%) .~

Each 'recursive definition' vields two classes of fixpoints. — , the
strong fixpoints and thc weak fixpoints, and a class of computed partial
tunctions obtained by applying ditterent computation rules to the 'recursive
definition'. In this work we first show the relations between the computed
functions and the stroug tixpoints (Theorem 1), and between the functions
computed by "innermost substitutions" and the weak tixpoints (Theorem .').

We are, of course, interested in those fixpoints which can be computed.
We give a sufficient condition on 'recursive definitions' to guarantee the
existence of a partial function which is the least (detined) strong fixpoint
of the 'recursive definiticn' (Theorem 1), and also the c¢xistence of a partial
tunction which is the least weak fixpoint of the 'recursive definition'
‘Theorem .. . We then describe a computation rule for computing the least
strong fizpoint Theorcem and another for computing the least weak fixpoint
‘Theorem © . We finally give an additional class of comput ation rules which

lead to the least weak fixpoint Theorem /'

.

We use quotation marks to avoid possible confusion with the well established
meaning of the word "recursive" in computability theory. Our 'recursive
definitions' include as special cascs those used by Kleene (1.1 ) and

others to define recursive functions, but some of our results arc actually
more general. We will omit the quotation marks when no confusion can arisc.

*’/ Informally speaking, a tixpoint u! a recursive definition is any partial
function which satisfies the detinition.
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Recursive definitions were introduced long ago, for example by Herbrand
1521), Godel (143k), ®leene (1.%) and, in a different way, by McCarthy (1963).
More recently, recursive detinitions have been studied by several authors:

(a) Morris /1t emphasizes the distinction between the two ways in
which a recursive definition can be considered, namely as defining fixpoint
functions or as a means of defining computations.

He also mentions the two possible types of fixpoints, and states a
theorem and a conjecture, both of which can be shown as special cases of
our results.

(b)

/

Manna and McCarthy (1.770) present two computation rules which they
call "sequential" and 'parallel", and give an example to show that there

are other intuitively appealing computation rules. The '"sequential' and
"parallel" rules, as well as the one suggested by their example are special
cases ot the rules that w¢ present in Section 1.4.

‘c) Manna and Pnucli 17.) formalize computations with recursive
definitions as sequences ot terms. Our formal computations are generalizations
of theirs.

d) Rosen 1771) establishes, in particular, the Church-Rosser property
for recursive detinitions which are essentially equivalent to those that we
consider in Section l.... This property is also a consequence of our results
of Sections 1. and l.r.. Rosen further establishes that such recursive
definitions possess what we call a strong fixpoint (which essentially solves
the conjecture in Morris (1%%#)), Our proof of this result is quite different,
and has the advantage of being constructive, that is of exhibiting a computation

rule which actually yields the fixpoint in question.

o



15 Motivation

This section presents some elementary cxamples and attempts to

provide an intuitive background for our model of 'recursive definitions'.

Let us consider first the well-known recursive definition of the
factorial function over the integers:

Fix) == (if » = 0 then | else weF (x=1))

(1)

As enphasized in Morris 1 a , there are two different

., and Rosen (1./71)

ways in which one can consider this definition:

,

a, as a functional equation in the variable "F'", (the equation
being implicitly universally quantified over "x'").
14 % A NG /0
b

as a reecursive definition of ¥ whereby F- is defined in terms

[t is essential ¢

[N ¢

v understund the difterence between the two approaches.

a In the tirst approach, ene is interested in studying the partial

functions "F" that satistv tle corresponding equation, i.¢., the fixpoints
ot the equation.

is a tizpoint ot the cquation i{:

SRR R [l i n then 1 else natf n-|

(1)

For this equation to be meaningful , one must detive precisely the value

of the right hand side o1 1 for a given parcial function [ and for a

given value n o}

“» Let us temporarily denote this value Ve )
If we take: .
n. 1T i e =
f n
IR .
we see that there is no difficulty in detining =~ f.n) = if n = then 1 else

nsfin-1;, if we consider "if...then...else..." as a function of three

*/ Where n! is defined, for example, as being the number of permutations of
n objects, or by some infinite t

arle from which the values are read .



arguments in the obvious way (conditional connective). 1t is easy to see that,

for every integer n, f(n' = 1(f,n), i.e., £ is a fixpoint of 7,

-/

Since partial functions can take the undefined value w —, we must be able

to give values to expressions which contain undefined arguments. For example,

if we take:

n
(@]

we have for n

~'g,0) = (if T then 1 else O*u).

1f we define Cwuw = @, we obtain:
7/g,0) = (if T then L else w).
Now, if we define in addition (if T then 1 else w) = 1, we finally get:
7(g,0) = 1.
In fact, the standard definition of the operation '+' and 'if-then'else' can
be extended for w in such a way that g is also a fixpoint of equation (L) .
In general, even after fixing the meaning of the base functions for
all possible values of the arguments 'including w), a'recursive definition'
may have more than one fixpoint (pussibly infinitely many) -- or none at all.
(b) 1In the second approach, one is interested in defining ways of
actually computing F by using the recursive definition. For example,
let us describe the natural way to compute F(?) by using the recursive
definition (1):

F(2) - if 2 = 0 then 1 else 2z L)

+ 2#F (1) (since 2 = O is false)

:/ The undefined value w can be consicdered as the value associated with
a non-terminating computation.



-2 2%(if 1 = O then 1 else 1«F(0))

- 2#1#F(0) 'since 1 = O is false)
—»2w(if 0 = © then 1 else U#F(-1))

— 2%l (since U = 0 is true)
=he L

Such a computation appears as an alternating succession of two kinds of
steps: "Simplification" and "Substitution".

In the simplification setps, all the expressions that do not contain

the function variable F are evaluated, expressions of the form "(if T
then A else B)" are replaced by "A", and expressions of the form "(if F
then A else B)" are replaced by "B".

In a substitution step, an expression of the form "F(n)'" is replaced

by "(if n = O then 1 else nxF(n-1))". A substitution step occurs only when

no more simplifications can be performed. (In more complicated situations,

substitution steps could involve the replacement of F(a) by the
corresponding righthand side of the recursive definition even when
@ 1is an expression containing F. This corresponds to a "call by name"
computation and will be discussed later in detail).

If such a computation of F(x) terminates with an integer n, we
say that the corresponding computed function f takes the value n at
x, i.e., f(x) = n. If it does not terminate, we say that f is

undefined at x, i.e., f(x) = w.



One should be aware that sometimes by adding simplification rules one

may extend the camputed function, (i.e., one may change nonterminating

computations into terminating ones). For example, the recursive definition:

F(x) <= (if F(x) = ) then 1 else 1) (@)

— \

over the integers, may vield two different values for £(0), which depend
upon whether or not we apply the simplification rule;
"(4f A then B else B)' replaced by 'B'.
if we do, we get that f(0) = 1, otherwise that £(0) = w.
The sequence in which the substituticns are performed can also affect
the convergence of the computation. Consider for example the following
recursive definition (Morris (1968), p4é):

-,

F(x,y) <= if x = . then O else 1 + F(x-1,F'y-2,x)) (3)

Let us compute F'©',1,. The first step is:

P21 = * % Bl F{=0:2))

Now we see that there are two ways of continuing the computation,
according to which occurrence of F we choose to replace by the recursive
definition:

(1) if we choose the "innermost' one, the next term is:

1 + F(1,14F (- ,F(u,=-1"})

(ii)} if we choose the '"outermost' one, the next term is:

2 + F(O,F(F(=1, *=2,1))

In both cases we have three ways to continue.

It is easy to see that if one keeps substituting for the outermost
occurrence of F, the computed value is f(-,1) = 2, whereas if one keeps

substituting for the innermost occurrence of F, the computation does not

terminate, i.e., f(2,1) = w, (which incidentally, shows that the innermost




compuiations are not, in genreral, those that terminate whenever possible).

So in general, ditferent computation mechanisms can lead to different
results, and therefore we have a class of partial tunctions computed with
a 'recursive definition'. Our aim in this work is to study the relation of
these computed functions with the fixpoints of the 'recursive definitions’.
We will at this peint introduce some of the formalism of our gystem.

1.- Terms and Their Evaluations

1.4.1 Syntax
The terms which are used in our 'recursive definitions' and in
the formal computations are constructed from the symbols of an alphabet
. ¥
consisting of a wmary function variable F, an individual variable x, given
n-ary function letters 8 individual constants Ci’ and g (which stands

for the symbol of an "undefined" element), as follows:

a %, €y and ¢ are terms.

b gtk Ly Bys 0ves By arc terms, and g, is an n-ary given
P
function letter, then gi'fl, e is a term
‘¢, if : is a term, then F @) is a term.

d there are no other terms than those which can be obtained
from ‘a, by a finite number of applications of ‘b, and ‘c).
For example, g Flx), g, lc, w)) 1§ a temm.
L oS Semantics
We defiae the semantics of the system by interpreting, in the
natural way, the Ei 's as elements c, of same domain 4, w as the undefined

element ; — and the By 's as partial functions g5, as explained on the

followirg page.

:/For convenience, we only discuss in this Chapter recursive definitions with a
single function variable and a single individual variable. In Chapters O, %, &4
and 5 the results are stated and proved for recursive definitions with several
individual variables. The results can be extended to systems of such recursive

definitions (See Appendix II).
l:/w has in fact the formal properties of an expression whose computation does not
terminate.



A subset D of o (D < ) is also specified as part of the interpretation.
It is the domain of the unknown partial functions f's.
7
Note that an element of the alphabet is represented by a letter

: , whereas its interpretation is represented by the

underlined with a
same letter without underline. We will omit the underline '.' whenever no
confusion can arise.

The interpretation or x and F will be discussed in the next paragraph.

There is a technical difficulty involved in the interpretation of the

5s 's : in most cases, one is interested in computing partial functions over
some domain D ‘c.g., the integers, the lists, etc.), but one needs to evaluate
some terms outside of that domain (for example, predicates). T¢ cope with
this problem, Manna and Pnueli (1/70) define two kinds of terms in their
: oA

syntax: the conditional terms (which evaluate in Dt — ) and the propositional
terms which evaluate in (T,F} ). Instead, we let the domain D of the partial
functions be a subdomain of g, the domain of our semantic interpretation.
In most of our examples, ;. is D {T,F}. In general, each n-ary given function

e ' ' ! \n ;
is specified as a partial tunction over a subdomain of ’A+, . Then, as shown
below, the conditional connectives can be introduced as given functions, and
so we do not make a special syntactic treatment for them.

Example: The conditional connective 'if-then-else' is usually

e e ¢
understood as a ternary function over {T,F} » /D" )", which is a subdomain
+.3 : y . . ¥a/

of 't )" = (DU {T,F} _ (w})) , and can be defined in several ways.—  Two

variants of the 'if-then-clse' connective have been discussed by Manna and

McCarthy (1970):
R - o ' + L 2
a) the sequential 'if-then-else', where, for every X,y € D :

/

'if T then x else y) = x

®/ D+ stands for D _ tu}; in general, for any set S, we denote S ! {w} by S+

*+/ Notice that we use only one symbol w, instead of using one for D and one for
the truth value domain {T,F]. In fact, the interpretation is not constrained
to have a truth value domain {T,F} distinct from D. The formal treatment of
chapters -5 shows that this does not weaken the results.

k) indicates the equality relation over A+; therefore w = w is true.

9
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if F then x else y) - y
if « then x else y w

b, the parallel 'if-then-else', where, for every x,y ¢ pt.

(it T then s else v X

it F then » else y, v

it o then = e¢lse x x, and

if w then » &lse v v when w7y,

Note that the parallel 'it-then-cls¢' is more detined than the sequential

'if-then-else'.

1.7.7 Evaluations of Terms

Informally speaking, once the variables F and x are specified

.i.e., bouid to given values,, a term 7 F,x, can be evaluated in the obvious

way ‘i.e., the inner subterms are evaluated fiirse) .
There are two natural wavs oi specitiying x and F:
a, one is to specify x as an clement o! D and F as a partial
. . . ’ : +
function over I i.e¢., a mapping of ) into D

! the other is to specify x as an element ot D —~and F as
.9

—_—

: 2l : it o
a partial function over D i.e., a mapping of D into D ).
Corresponding to these specifications ot the variables, there

are two wayvs of evaluating the terms, which yield what we call, respectively,

the weak value and the strong value of a term.
- ] L. e/
) The weak value ot 7 = -(F,x, for F being { ¢ pf/D) — and
I + ~ - eE e
x being §eD is an clement ot 4 ,denoted = 1,8, which is defined inductively

as follows:

L)
% One may want to allow » to range over D' (i.e., with possibly undefined
value , because one mav want to consider x as the value of a computation

‘which may be nontcerminating
'j g o : w3 +n.‘ .

What we call a "partial tunction over D is actually what is usually
called a total tunction over D* ‘e.g., in Morris (1 %) . However, we
find it convenicnt to consider such a function as a special case of g
partial function of a domain § into a range R, where S = D* and R = D.
See Appendix 1 for a presentation of the main results regarding those
functions.

We denote the set of partial functions over D by pf D) and the set of
partial functions over ¥ by pf/Dt),

10
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L AR is ¢ '1"”’~n" 3 B, 07 g & TERW A TS,
v = G b ¢, there are two cases:
.1y 48 T e @ then T(L.f 4 this special rule and 1its
4 - o A
¢ftects ure discussed below);
v 1 = Cr l\-:
V&) il {.50 ¢ w chen 7{7.§ t EIELY .

h the strong value of 7 = - F x for F beitig lgpl‘D+‘ and x
being €Dt {5 an element ot (¥, denoted t,%,,which is defined inductively
as follows:
ik = iv : as in case 'a
vl if tis b o, then Tlre) = fa0f,e
The only differcnce bYetween the two evaluations resides in the
evaluation of the terms } 5, . In the first case, since f js & mapping
vt D inte D*, fiy) has no meaning:  the solution adopted is equivalent to
arbitrarily setting f i« In the second case, since { is a mapping of
B* imte D%, flw) s specitied.
This difference turne out to be an cosential one, as will be seen in

Section 1...1.

. . . ]
I . 'Recursive Detinitions

A'recursive detinition'is an expression ot the form F'x = T(F.%),
where - is a term over an interproted alphabet. We use D to denote the
partial tunction domain of the ianterpretation.

\ . !
I...1 Fixpoints of Kecursive Definitions

' i r " ¢
Let ¥ x) -= - t,» be a recursive definition. There are two types

X/Me are implicitly assumini, heve that the vector - ~1.f.§),..:. ’a fED)
belongs to the domain ot y_ . In “hapter O, we present a met'iod
for relaxing this assunption.

1L



R ——— -5,

ot fixpoint functions of this 'recursive definition', ro responding to the
two evaluations ot 7 | ,x discussed in the pPrevious paragraph:

a' A partial tunction t over D is a weak f{ixpoint ot the

'recursive definition' it:

¥eel o Tlg L&) ;

- <

; ) : , + - .
b) A partial function f over D' is a strong tixpoint of the

'recursive definition' if:

e A Sra e
WEEDr o e LAL 38

These two tvpes ot fixpoints are in general completely different:
there are 'recursive definitions' — which have weak fixpoints but no strong
fixpoints; others have strong fixpoints but no weak fixpoints. There are even
recursive detinitions whiech have weak tixpoints and strong fixpoints which
agree nowherc on D. bmomples of such recursive definitions can be sound in
Secition & . 9.5 of Chaptet . However, we shall sec 'Sectjon 1.'. that,
for an important subclass of 'recursive detinitions', the weak fixpoints and
the strong fixpoints ot such recursive detinitions have the property that they

..

are all extensions — o! one of them, the least weak tispoint ot the recursive

definition. A wedak resp. strong) fixpoint f of a piven 'recursive definition'

is said to be a least weak Lixpoint (resp. strong)o! the 'recursive definition'
ot 2

il every weak resp. strong tixpoint of the recursive detinition is an

extension — of t ,

bk, Computiations with Recursive Definitions

A natural way o! formalizing computations such as the on!s we

informally presented in Section 1.1 is ¢ ider them as a sequence of

Z We emphasize again that we use the w cocursive' to indicate that the function
variable appears in both sides ol the "recursive detinition", i.¢. that F is
defined in terms ot itselt, which is the usual intended meaning in programming
languages ¢.g. recursive Pprocedure, . It is not intended to mean that 7(F,x) is
recursive in F or x in the sense of the recursive tunction theory. In fact, so
tar, the base functions of the model may well be non-computable. Restrictions
on the base functions are only needed for Theorems “- .

It f and g are par'ial functions over a set § i.¢c mappings of S into S+), we say
that u is an extension of f iff: /yxg€) f(x) # w="f/x; - pg(x)]. See Appendix
I for general properties of this extension relation.



terms, transformed by successive manipulations. in the style of Manna and
fnueli "1+70).

. ' . B NCE
Given a recursive LlLiJlllLlOll'

we define a computation o!f a term a4 F,x, for x = ¢, where ¢ is an element

of DY, as a sequence ol torms al where:

and, for 1 2 0,a,

(41 is deduced from N by a finite number o! applications ot

two basic rules:

A

1. Replacement of a term B occurring in li by some term Yy where,

. A
for every partial function { over D

=3 ~
_~

Blfe) = w(f.e);
)
i.¢., replacements that must preserve equality of the strong values.
2. PReplacement ot a term of the form F/g) occurring in 4y by [F,o)
where ~ can be any tern.
A computatioa terminates if and only if it eventually reaches
some value in (. O mputation reaches w it is not consiilered to have
terminated.
Rule | allows ost tasiliar simplitication rules, such as:
a tor the seqnential 'it-then-clse' connective:
17 then A clse By - Ay,

Jog e ey A Jlse ) - B, and

.

IlJLht‘/\(ISL’ '}: T

(b, for the parallel 'it-then-clse' connective:

¢' for the multiplication tunction '*' over the inteyers

or

extended hy 4 "

«/Notice that the detinition of a computation demands that an interpretation
of the alphabet be supplied.




J*A — ', and

K%3 - G:
.4} for the multiplication function '*' over the integers
extended by 1%y = w*l =4
i*A . A, and
A%] - A.

It also allows the replacement of given functions

(with completely specified arguments) by their values, that is:
) » » F3 ( 0 0.0 o
gla,....a) b where b gla, ,an)

But in fact there are many 'non-standard' replacements that
are allowed by Rule 1. For example,
a) "Backward" calculations, such as:
A (if T then A else B), or
b, Replacements indicating more sophisticated "logical
deductions', such as:
if F(x then F(x) else C) - (.
This last example is the one that Manna and McCarthy 1 770) use
to sugpest appealing computation rules other than their 'sequential' and
'parallel' rules.
It should be emphasized that, because of Rule 1, computations
depend on the interpretation of the alphabet: some replacements which are
allowed within one interpretation can become illegal in another interpretation.,
Rule clearly allows not only the "innermost" substitutions of
F(«) by = F,n (that is, when ¢ is a constant), but also any '"outer"
substitution of a term F » by T F,y) (that is, when 4 is an arbitrary term which
may contain F's). Morris (14,) and Rosen (1/71) use the phrase "call by name"

to designate these '"outer" substitutions.

N




Intermediate <topw

example , one may replace dn occ

it is known trom previsus «
]

For & given 't 1

in which one couid app Lhese

an be skipped in a compuration For

¢ 0 L ts . ompute \ 1

aAssu ang

ve de ticn| there are o! course many ways

ruces tooa given term, and consequently there

may be a large number ot ditterent computations of this term.

So in general, there are many computed functions of a 'recursive

detfinition', A partial tunction 1 over DY or over D, is said to be a computed

tunction of a given recursive definition over D

+ ; =
that, for every xeD or for every gD, :

‘or over D if it is such

1) if f£(x # 4 then there is a computation of F x) which

terminates with f/«),

[y A8 » then there is a computation of F(x) which does

not terminate. —

1.5 Relations 8ctween the Fi-points and the Computcd Functions

We now come to two important results, relating the fixpoints of

N 0 A e A S /o :
a4 gilven recursive detinition to its computed functions.

THEUREM 1. For eviry recursive definition', every strong fixpoint

] : ; ot
18 dn extension ot every conputed tunction over D .

IHEOREM . For ever: recursive definition' every weak fixpoint is

an extenwion of ever: computed

function over D obtuined by innermost

computation, —

it is clicar that "computed functions" as we have defined them may not be
~'&omputuble” in the ucoul computability theory meaning. This makes
1 and stronger. Notice also that the notion of "computed function™ is
re!ative to a particular recursive definition.

t heorems

tbﬁn innermost computation i1s any computation in which oiily call by value is

permitted, that is, F &
~ 1s an individual constant.

may be replaced by = F,u) only when



The proofs of these results are given in Chapter -,

Theorem 1 implies that:

a It one of tae computed tunctions is a strony fixpoint, then 1t
is a least strong fixpoint.

Therefore, it a'rccursive derinition'does not have a least strong
tixpoint, no computed function can be a strong fixpoint of thisg 'recursive
definition'.

‘b A'recursive detinition'cannot have more than one‘computable'strong
fixpoint (that is, a computed function which is a strong fixpoint).

‘¢ If a'recursive definition' has a strong {ixpoint, and if two
computations for a given x in pt terminate, they must terminate with the
same value. This is a Church-Rosser type result, and it also appears in
Rosen "1 /1 . Rosen's proof of this corollary is entirely diiferent from
ours, and does not rely on the fixpoint idea.

d, The result o any terminating computation of F(x) must be the
value at = of every one of the strong fispoints ol the 'recursive
definition'., This impli.s that:

(1) If a'recursive definition' has a strong fixpoint which is
undetined on some subdomain D' of B, rham o corputation of | 'x)
en) D .
Example: Consider again the recursive definition ot the
factorial function over the integers:
Fox, = it x = then | else x*Flx-13).

In section 1.. we mentioned that the partial tunction:

5 i, 2 n »
g(n) =
|

L AN
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was a fixpoint of the recursive detinition for the appropriate interpretation
of the given functions. It follows therefore that no computation of F(x)
using this recursive definition can terminate for x -

2) 1In particular, it follows that no 'recursive definition'for which
the totally undefined tunction .; is a strong fixpoint can have
terminating computations ot F x) for any x.

Thus, if F occurs in -, and if all the given functions g used in +(F,x)
arée such that g(....d,...) r i.e., are undefined whenever at least one
argument is undefined , then it can be shown that | is a strong fixpoint of
F x) <= v'F,x), and theretore no computation ot the 'recursive
definition'can terminate.

For exzample, for F(x) <= Fix), ¥(n) <= F(x + 1) or F(x) <= F(x) + 1,
where  + 1 = 4 , no computation can terminate.

This implies that iv a ‘recursive definition' having a terminating computation
at least one given tunction has to be sometimes defined when one of its arguments is
undetined. Indeed, both the scquential and parallel 'if-then-else' connective
have this property.

), If a4 Yecursive de'inition has two strong fixpoints that
differ for some » , then no computation ot F can terminate.
Example: Consider the 1ollowing tecursive definition' over the

natural numbers:

*
Bix ) == uff [(F(% F'x - 1)+1) then x else g-/
with the standard interpretation of =, 2 (with 0 21 =0 and o = 1 = ),
with 4 + 1 = , and the parallel "it-then-else' connective. 1t can be

‘Because of the presence ot -, the righthand side of this definition is not
"recursive" in the sense ol the usual computability theory.



and g(n) = n are strong fixpoints

t(n,
Theretore, no camputation of F(x)

for the weak

shown that both the partial functions
detinition’.

'recursive

can terminate tor x

of this
Similar consequences can be obtained from Theorem
fixpoints and the tunctions computed by innermost computations.
» one gets for example that,

By combining Theorem 1 and Theorem
1), then no innermost computation of F(x)

if a'recursive detinition' has a weak ftixpoint and a strong fixpoint

which do not agree for some »
can terminate for x .
[t is very cas: to give examples where a computed function is not
4 function computed
'recursive definition’

a4 strong tixpoint ot the 'recursive detinition', or where
fixpoint of the 'recursive

by innermost camputation is not a weak tixpoint of the
We now want to give sufficient conditions for fixpoint computations (i.e.,
a

computations such that the computed function is
Since there are 'recursive definitions' without fixpoints, these

definition' .
conditions must obviously concern both the "fecursive definitions' and the
ave no

computation rules.

Monotonically Structured Recursive Definitions
As indicited above, there are 'recursive definitions' which h

1.¢
else

1

then

F(g) & j#

3 +
tor example, but do not have any that are computed functions over D" .

fixpoints at all, such as
[ 1334
There are also 'recursive definitions' which have strong fixpoints

Fix = 1)+1) then x else ¢

the 'recursive definition':
Fix) <= if Fix)
(where the given functions have the same interpretation as in
of section 1.5), has strong fixpoints,

example
1¢

the last

For example,



Ly

e.g., f(n) n ~

il

» but does not have any lcast tixpoint, and therefore

none of these fixpoints can be a computed tunction of the 'recursive

definition'.

We will now give a sufficient condition on 'recursive definitions'

which guarantees thc existence of a least strong fixpoint and of a least

weak fixpoint.

We first cuastruct an ordering < on (A+)n in the following way (see
Scott (149)):

7

a, s x and x < x for every xeit [all other pairs are unrelated)

o) xl,x;,...,xn‘ S _yl,yﬂ,...,yn, iff

:xl < yl} and x, <y.) and ... and

&

X A&y, )%
n )n’

We say that a term : is a monotonically structured when every given function

occurring in @ is a monotonic in the sense that is preserves the ordering <
defined above.

Base functions,g's such that gl .ow,-.) = w /1.e., that are undefined
when at least one of their arguments is undefined, regardless of the values of
thke other arguments) are monotonic. The sequential and parallel if-then-else
connectives are also monotonic; but the equality predicate over At) is
not monotonic.

Any furction g whose values are known for defined arguments can be

extended on undefined arpuments in such a way that it becomes monotonic,

9
(e.g~ by defining gl...; w, .:.) ® w as above. A

/

*/Actually, one can show that the strong lixpoints of this recursive definition
are all the functions:

w i x =y O if x =y
fi(x: = x1f 0+ x<i and gi(x) = % O S s d
(ot feNsd = 1 G i 5e > 4

for all de Si:_m

:I/In fact, one can show that if g is a partial function over AP, it has a
mininal monotonic extension to /z+), which is the one discussec above, and
a maximal monotonic extension to (A*)P. 1In general it is not possible to
obtain the maximal extension in an effective way.

19
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We say that a recursive definition f(x) <= 7(F,x) is monotonically

structured if 7T (y,x) is monotonically structured. This class of recursive
definitions contains as special cases:
(i) Kleene's detinition of partial recursive functions.
'ii) The McCarthy calculus with sequential and parallel 'if-then-else'
counnectives.
The interest of monotonically structured recursive definitions lies

in the following two theorems:

THEOREM 3. A mcnotonically structured recursive definition has a least

strong fixpoint,

THEOREM 4. A monotonically structured recursive definition has a least

ki ;
A characterization of these fixpoints in terms of least upper bounds will

be found in Chapter .

1.7 Fixpoint Computations

In the remainder of this Chapter, we describe computation rules which
lead to the least sticag or weak, fixpoint for monotonically structured
recursive definitions, thus showing that the fixpoints of Thcorems 3 and L
are in fact computablc.

1.7.1. Full Computation

The full computation of 4 F ,x) for x = X is a sequence of

terms ,, starting with o = Q(P,xc, and such that is obtained from
i :

5ol

o4 by: a) first performing all possible standard simplications,

and then;

'b) simultancously substituting for all the occurrences

of ¥ in ai' =

A stundard simplification 1is any rule of the form:

EL-AI,A:‘,ata,An) -5 a s

~

*/This is indeed possible, as shown in Section 5.3.

20




e

where ¢

(1) each A, is an individual constant or a temm variable

(a term variable is a letter which stands for an arbitrary term);

(i1) no two term variables 2re identical;

(111) a 1is an individual constant (not );

P~

(iv) the equation g(gl,ez,...:n) = a holds, for every n-tuple

<€ ""En > 1in the domain of g such that,if Ai is

1

an individual constant a, Ei takes its value a .
All rules that satisfy the above definition must appear in the
set of standard simplifications,

Examples: (a) if T then 1 else A - 1 is a standard

simplificaticn since: if T then 1 else ¢ =1.
(b) If '#' is the ordinary multiplication over
the integers, then éfg -»é’ is a standard simplification corresponding to the
equation 3*2 = 6. This is a case where all the Ai's of the definition are
individual constants.
(c) If '*' is the ordinary multiplication over
the integers extended by O*y = , then EVA —99' is not a standard simplification,
because the equation O*y, = O does not hold. However, if '*' is the ordinary
multiplication over the integers now extended by O*y = O,{which is a
monotonic extension) then ng —+9‘ is a standard simplification.
The rules for standard simplifications are not completely
deterministic, since the order in which the simplifications are performed is
not specified, but one can show that the final term /after all possible
simplifications) is the same, regardless of the order in which the simplifications
are performed.
As an example of full :omputation, let us consider the full

computation of the term o = F(F(0)) using the recursive definition of the

~

21



factorial over the integers. The sequence of terms of this computation is:

o = a = F(F(0))

6 ((R£Q = Q then L glse O'¥(021)) = 0) then 1

dl ~n

else (1f 0=0 then 1 else Q*F0-1 ))*F((if 0=0 then 1 else O*F(0-1) -1

~r [ diaa e e Al Ale o s oY) ~ A o~

After standard simplification, 1, reduces to:

1

7 =i , and the following terms are:

1 else 0*F(Q-1))

P R
u ~
We have:
THEOREM 5: ffull computation,. For a monotonically structured recursive

definition, the partial function over D+ computed by full computation is the

sirong fixpoint of the recursive definition.

Tl Standard (.omputation
The standard computation of ¢ Fx) for a== is a scquence
of terms 4y starting with « = . F,x ,, and such that ai+1 is obtained

~

from 4 by:

‘a) first perlormning all possible standard simplifications,

and then

'b) simultaneously substituting for all the lonermost occurrences

@5 g

THEOREM ¢ : (standard computation). For a monotonically structured

recursive definition, the partial function over D computed by using the standard

computation is the least weak fixpoint of the recursive definition.

Notice that, trom Theorems 1 and ', it follows that for a
monotonically structured recursive definition, the least strong fixpoint
is an extension of the least weak fixpoint. Actually, there are examples
for which the least strong {ixpoint is strictly more defined then the least
weak fixpoint. (Example (%) of Section 1.2 is one such. This example is

from Morris (1%%)). The full computation uses call by namec whereas the standard

computation uses call by value; it is usually assumed in software discussion that,

22



in the absence of side effects, the use of call by name versus the use of call by
value affects the rate, but not the existence, of convergence: {t follows from

the above discussion that this 1is not true.

1.7.3 Safe Innermost Computaticns

The standard computation is interesting for theoretical purposes,
but it is by no means the only computation rule which yields the least defined
weak fixpoint. In fact, it is shown in Chapter % that:

THEOREM 7: (safe innermost computation). For a monotonically structured

recursive definition, any partial function over D computed using safe

innermost computation is the least weak fixpoint of the recursive
definition.

A safe innermost computation of a(F,x) for x = XO’ is any
sequence of terms ay such that «_ is J(F,xc) and ) is obtained from
Gy by :

7

a, first performing a set of safe simplifications (see below).

‘b) performing safe innermost substitutions.

A set of safe simplifications consists of the set of standard

simplifications /See paragraph 1.7.l) augmented by rules of the form:
8 AI’A"""An) . B
where:
fa) the Ai's are either individual constants or term variables
(not nece-sarily all distinct);
x/

b B 1is an Ai which is a term variable;

\ o 1 )3 ] *_:/ .
c) the equality g'xl,...,xn) y, where g' is a regulay extension

of g, holds for all possible values of the n+l -tuple
+
<x1,...,xn,y¢ over A such that:

(L) e KseoesX > belongs to the domain of g'

-/The case in which B is an individual constan: is redundant because cne can
show that the corresponding rule must already be in the set of standard
simplifications.

__/ regular extension of a momtonic given function g is a function g' such that:
1) VEGDom(g).g(E)Eg(E
2) Dom(g') = Dom(g) U f= € (A")" | £<n and m € Dom (g)}
3) g is monotonic.
See Chapter 5, paragraph 5.5.4. for details

23
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'i1)  For every i, 1 <1 < n:
if A, 1is a constant a,, then x. = a
i i i ~1
if Ai and Aj are the same term variable,
then x, = x,.
1 ]

1ii If B is the term variable Ai’ then y = X .

Note that there is no need that all possible rules satisfying
these requirements will be in a particular set of safe simplifications. In
other words, one is free to pick none, some or all of these rules to augment

the set of standard simplifications.

The safe innermost substitutions are innermost substitutions

performed on certain key positions. To define these positions, we first need

to define the y-sets of a base function g; an y-set of a base function g

in a tem g"al,...,yl is a set ot argument positions such that if all are un-
~ [

defined in the set, the corresponding value of g is undetined. More f{urmally,

it 1s any subset I of {1,/,...,n} such that, for every i€ 1, fi is not a constant,
and the equation: I3 zl""’xn’ u,
holds for every n-tuple RRRERE N in the domain of g such that:

tor ¢very i€ 1, %, F ow and:

for cvery i, 1 < i < n, such that A is a

constant a., xi takes its value ai.

Example. In the term: if‘E'F,xA then g F,x) else E'F,x'.
the sequential 'if-then-clse' conncctive has five y-sets:
1y, 1,2}, 11,23, 12,53, 11,2,%1; the parallel 'if-then-else’
connective has only four g-sets: (1,0}, f1,33, (2,3}, {1,2,5}.

Now the key positions in a term , where safe innermost substitutions

may be performel, can be determined inductively in the following way:

(a) if =, cory, there is no substitution to perform;
(b) if o = gf O1sansssespy)s then simultaneously perform the
2l



substitutions in the key positions in o, for all {i€I,

i
where 1 is any -set of g in 4 (note that this is a non-
deterministic process);

c if 4 = F/e) we distinguish between two cases:

il if @ contains F, then perform the substitutions

in the key positions in #&;

ii if = is an individual constant then substitute -(F,p  for
F{e).

The intuitive idea beh.nd this is cuite simple: because the g-scts
of a given function g indicate positions such that when they are undefined
the whole function becomes undefined, 'in-depth' computing within these
positions should be safe -- i.e., computations of these arguments must
eventually terminate i1 th~ computation of the whole function is to terminate.

The 'sequential' and 'parallel' computation rules of Manna and
McCarthy 1770} are safe innermost computations for the recursive definitions

that these authors consider.

1.7 Pitfall Computations

In this section, we discuss several examples of 'recursive definitions'
and/or computations which do not satisfy the sufficient conditions of
Sections 1./ and 1.7.

Example 1. Consider the recursive definition

F(x) «= F(x)+1
over the integers.
For any integer, the standard computation of F(n) using this definition is:
Fin) = F(n)+l - F(n)+2 —....
which never terminates.

It follows that the computed function for this recursive definition is (),

the totally undefined function. For () to be a fixpoint of the recursive
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definition, it is however necessary that y = ¢ +1; if we had
w # w +1, then '"+" would not be monotonic, which would violate the general
requirement of Section 1.0,

Example 2: Le- us consider the following recursive definition:

Fix) = (if x = O then O else F(x-1 #F(x+1))

over the integers.

If 'v' 1is defined so that O*y = 4,*0O -  and 'if-then'else' is
the sequential conditional connective, the partial function computed using
the standard rule is:

f @ Hf n =G

{  otherwise.
¢/n) is a fixpoint over I of the recursive definition, in ac ordance

v

with the results of Section 1.7.
Now let us modify '*' so that O*y - ,*( O, and cons:der several
different computation rules:
a) If we still compute using the same rule as above (i.e., without
simplification by O, then we again obtain §(n), which is no longer a
weak fixpoint of the equation. In this case, '¥' is still monotonic, but
we have violated the conditions of our standard computation of Section 1.7.
Since the equation:
O¥p = w0 =D
holds, we should have used the simplification rules:
*A — O and A*O - 0
If we use these rules, and if we perform the substitutions in parallel,
the computation becomes a standard computation, and we obtain the function:
¢(n) = 0 (for all n)
which is the least defined weak fixpoint of the recursive definition.

(b) However, if we use the 'leftmost innermost' substitution rule,

26



with the above simplification rules O*¥A — 0 and A¥Q - , we obtain the

tunction :

Lx otherwise

which is not a weak fixpoint of the cquation. This method of substitution,
however, is not a sate innermost substitution according to Section 1.7,
5 3 - 1 41 3 oS - . sl )8 . s .
since the only 1 - set of in this case is {1, }, which requires that
substitutions be performed on both positions.

; } \ . RRPTR P

Example ~: Consider the recursive detinition:

Fix) <= (if F(= then F ‘%) e¢lse

where the conditional connective is the paratlel 'if-then-else'.

The partial tunction computed by any of the methods ot Section 115

will lead to the undetfined tunction. However, .. is not a tixpoint of the
recursive definition',since tor every x, L, whereas:
5 ® i g @ then g else

:

it I then w else

In this case, - F.x does not satisly the requirements ot Section 1.
since is not monotonic.

There is one wayv to get around this -- in this particular case -- which
is the tollowing: consider t{F,x to be: ¥ F{x).0), where gly.,z) = il
w - 2 then v vlse z . Now it can be checked that g is monotonic and verifies

the identity:

N

Vv,2z : gly.z,
Therelore, p has the 'safe' simplification rule
glh:B) =8

according to Secction

Z(



s

Hence the computation step
glF(x),0) =
is now legal, and leads teo the least defined fixpoint over D of the

equation, which is the constant tunction always equal to O.
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2.1 Introduction

In this chapter, we present the syntax and the semantics of our model

of 'recursive definitions'. we give formal definitions of the concepts of

fixpoints and computed functions of such 'recursive definitions'.

0 Syntax
<e2.1 Alphabet

An alphabet, denoted A ¥F,%), is a collection of symbols par-
titioned in the following way:
i) There are n symbols, denoted X l < i «<n, which are called

individual variables. We denotc the n-tuple /xl, S xn\

by X.

ii There is one symbol, denoted F, which is called function variable.

i There is a non-empty set C of symbols called constant symbols.

iv'  There is one special symbol, denoted 4 which is called the unde-

fined symbol.

v' The other symbols are called Ziven function symbols. The set of

given function symbols is partitioned into classcs G], (G=NT0 Gp,...
where, for cverv positive integer p, the elements of Cp are called

the p-ary given tunction symbols. Somc or all the G 's may be empty.

The symbols (iii), 'iv), v are denoted by small letters with an
underline ~ : a, b, £,... for the constants, 4 for the undefined
symbol £ b, k,... for the functions.

At this point, we ecmphasize that the elements in the alphabet are
just symbols, and do not have any meanings as variables or functions of
some sort, in spite of the way they are called.
celv Terms

The terms over an alphabet are defined inductively in the following

way:



(1) The individual variables x,, for 1 < i < n, are terms.

i,
(i1) The constants in C are terms.

ii.i o0 is a term.

(iv For every p 0O, and every ‘g € Gp if gt w2""7p are

terms, then Biry, Tayeess wp\ is a term.

(v) 1t Tyr sees T, Are terms, FITI,-.-, "n> is a term.

(vi) There ar¢ no other terms than those which can be obtained from
1), (ii) and (iii) by a finite number of applications of (iv)
and (v .

For example, 1if c€cC, 8 € GY g, €GC and n =1,

~ e’
§2(§,1(F(x>‘\"§,2(£'2>> is a term,

Terms are usually denoted by greek letters o, f,... gy Tyeo » Sometimes,
when we wish to emphasize the variables of the alphabet, we denote the terms
o(F,x), 8(F,%X), etc... .

For proving properties of terms, we will frequently use what is known
as the principle of structural induction, which is valid here because of
the extremal clause (vi). It is a special case of Noetherian induction
see Cohn (19%5))and has been discussed thoroughly in Burstall (1969). Let
us briefly recall here some of the relevant notations and facts.

We define an ordering relation between the terms over an alphabet
in the following obvious way, by first defining the “immediate subterm”

relation:

Definition A term , is an immediate subterm of a term @ if and

only 1if:
(i) g =g {71,...,1 ) for some p >0, some g€ G, and o = fig

for some i, 1 < i < py

or: (ii) g = F(Tl,...,wn) and o = -, for some i, 1 <1 < n,

)l
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Definition The "proper subterm" relation is the transitive /non reflexive)

<losure of the "immediate subterm" relation.

The "proper subterm' relation is a (strict

ordering relation between

terms, in which every decreasing chain has a minimal clement (tecause of

the extremal clause : .2.0 vi).

principle over the set

f terms

lation, i.e., to prove that a property

sufficient to

» v

~ b
Call ot

For

For

For

and

show that:

every i,

every ¢ € C,
.
every  p 0

every g C Gp,

"'1,00-,

cverv n-tuple of terms

n

Substitutions

Substituting a term - for a term 2 in a temm

sults according to which and how many occurrences

l <i «n, ¥(x,

-

r)

then

1

C/.

~

for every p-tuple of

if = ™

18 O

1

and

n’

N
.

"1,--0,‘

~

n

’

terms

and...and

if a0

holds for every teim, it is

71, ...,Tp, and

then

=)

Structural induction is therefore a valid

structured by the "proper subterm" re-

and...

- can yicld different re-

of = in - are substituted

for. Let SZ = denote the set of all possible .erms obtained by replacing

=b_v~,in

(%]

substitution of

ductively in an obvious way:

a

b

-
.

L

b-i

2= G dhien

otherwisce ‘e

£

- biii

By convention,

¢ 1Or no occurrence

q")’
[=]

it will contain

v

b-iv) if =~ = g’-l,...,,p),

pe

¥ ® Loty

then ¢

or if -~ is a constant in C, or if

E &8 in -

~ itself

if - is an individual variable x,

+ is 4, then:
~

1

o4
S
G

corresponding to

«< N

r-3.

7 can be defined in-

b



S e e o

@ = o oo fol 5 Y & & e o
SB T B oy T 1 € 58 T 'op € S5 p}
(b=v) 1if =~ = F’Tl,..,yn\, then:
sg¢={F(cl,.. 2 |c,1es‘ér Tl,..,.,cneso’f},
Remark Such an inductive definition defines uniquely the set S¥ = for

any triple of terms 4, B, 7, as can be shown rigorously by structural in-
duction on 1. The detaile¢d proof is left to the reader. We will very often
use similar inductive definitions in the remainder of this work, without proving
that such definitions indeed uniquely define what theyv are supposed to:

the proof is generally trivial by structural induction.

2.5 Semantics
In this section we define the semantics of our system, that is we define
interpretations of the alphabet and of the terms.

2.3.1 Interpretation of an alphabet

An interpretation of an alphabet consists of:
(a) & non.empty domain ¢, together with a 1-1 mapping of C (the
set of constants of the alphabet) onto p. If ¢ is o coastant
in C, we dencte its image in A by this mapping by c, and we
call ¢ the value of ¢. Conversely c can be thought of as the
name of c. The constraint for the mapping to be onto implies
that | C | = | o | and says that every element of 5 has a name,
which will be convenient later.
(b) An element , not ir A, which may be thought of as the 'undefined'
value (i.e. the value of the 'undefined symbol"g).
‘c) A subset D of A. /The motivation for introducing D has been given

in the general discussion, * 1.3.2).

fd) For every p = 1 and for every g € Gp, the interpretation (or value)

N
N



,
of g will be a mapping g of a non empty subset of (p )p

+ ¥
called Dom(g), into A —K These mappings g are actually the

base functions (or given functions) of the interpretation. We

refer the reader to the discussion in ¢ 1.3.2. of these base
functions, and to the detinition of the scquential and parallel
'if ... then ... else’' as examples of such functions.
Note that an elemert of the alphabet is represented by an
underlined letter, whereas its interpretation is represented by the
same letter without underline. We will omit the underline whenever no
confusion can arise. For example, according to our notations, the correct
way of writing the temm used in the familiar - ccursive definition of the
factorial over the integers is:
if x = O then 1 else x % F(x - 1),
= oSS o et p 1 4
One adequate interpretation is the folliowing:
[he domain D is the set of integers, the domain p is Dy {T,F}.
Thus -%, 0, 1, T are constant symbols, for example, and -3, O, 1, T

are their values.

Given Functions Symbols: Interpretation:

if c e then Ty OlSc s o0

= el e~ The sequentinal 'if ... then ... e¢lse ..."

defined in 7 1.5.2.

+L
= The equality predicate over (D ) .
: ) s . e
’ The multiplication * defined over (D )7 by:
¥ x,ycD, x*y 1is the usual product of x by y.

¥ xeD, FR g m g TREGgr =@
- , ) +.2
o the subtraction - defined over (D )~ by:

Y X,y€D, x = y is the usual subtraction

i/Recall that, for any set S, we deunote $ |J {g} by st

%




of y from x
VXED, w=-x=x-9=y-g=gy
When we do not wish tu emphasize the distinction Letween syntactic
terms and their values, we simply write the sar» term:

if x = 0 then 1 else x * F(x - 1)

~ AV 2Y ¥ ~rr

2,%.2. Evaluation of terms

Interpratations of the alphabet leave F and the xi's free. If we
supply some '"value" to the functional variable F, as a partial function
over some domain, and some 'values' to the individual variables xi's.

*
it becomes possible to evaluate the terms Y over an alphabet A(F,X).

More precisely, there are two natural ways of specifying F

(a) One way is to specify F as a partial function of D" into D (1.e.
a mapping of D" into D+).
(b) The other is to specify F as a partial function of (D+)n into

+ +.x v/
D (i.e. a mapping of (D )n into D)

*/ Here and in most places throughout this work, we use the word "term"
to mean "interpreted term', as there is usually no possible confusion.

See Appendix 1 for a presentation of the main results regarding
partial functions. Here are some definitions and notations that will

be used throughout this work:

A partial function of a domain S into a range R 1is a mapping
of S into R . We denote the set of such partial functions

pf (S - R).

For conveniegce, we abbreviate the set of partial functions of
D" 1into D, pf(D D), by pfn(D), ang the set of pargial
functions of (D¥)? into D, pf((pH)" - D), by pfn(D Yo

R en o e

I

i




In both cases, X, can be specified as an element of
&= (d], where d is an element not in A and f w- ﬂhe meaning of d ig
discussed below. There are technical reasons, which will be apparent in some

proofs later on, why one wants to define the evaluation of terms for xi's

outside D+\.

Corresponding to these two ways of specifying the variables,
there are two ways of evaluating a term, which yield what we call,respectively,
the weak value and the strong value of the temm:

(a) the weak value of a term T=q~F,X) for F=f ¢ pfn(D) and
x=F ¢ (A+ U fd])n is an element of A + (j {d}, denoted ?(f,E), which is defined
inductively as follows:

(i) i == By T0E,E) = L4

(i1) 4if + = ¢, where ¢ is a constant in C,

~

E) iR .= 5

(iv) if - =g /Tl’ T ...,Tp) then:

- if the vector - 1 B85 ,Tp f,% - does
not belung to Dom(g ' then 7 {,7 = d;

- otherwise, -/ f{,% g ?i o e ,7}([,? :

v if =F O EEERTL then:
- if the vector -. ?i {7 5 I (f,%) does not belcng to
n
; + ~, \
D )" then F(£,F) = ¢;

- otherwise, if for some i, 1"iSn,fﬂ(n%)z<m
then ':(f,é) =g g
- otherwise ?/f,;) = f(?l(f,?),...,?h"f,g)).
Again, as indicated in & 2.2.4, an easy proof by structural

induction shows that (i) - (v) uniquely define T(f,£) for

%0



¥+ n
any term r, any f € pfn(D) and any £ €(p U {d}) .
Note that the 'd' symbol that we introduce here corresponds
to a 'don't care' condition, or, better, an 'error message'

reported by the evaluation mechanism. It has a very

different intuitive meaning from the 'y' symbol which
corresponds to a loop.
(b) The strong value of a term «(F,X) for
_ Pt - + n
F=f¢epf (D ) and x = £ £(p 1y {d}) 1is an element
of 4 + 1) {d}, denoted %(f,¥), which is defined
inductively as follows:
(i) - (iv) as in (a)}
(v) if 7 = F'Tl,...,'rn) then:
- if the vector < ﬁi(f,%),...,ﬁ;(f,i)> does not belong to
+. 2o 4 B
(0" )" then F(f,£) = d ;

- otherwise, F(f,r) = f (fi(f’é)""’ah(f’!))'

The only difference between the two evaluations resides in the
evaluation of term of the form F'~1,...,¢n). In the weak evaluation, since
f 1is a mapping of D" into D+. f(El,...En) has no obvious meaning if one
of the Fl's is 4. The solution adopted in a-(v) is to arbitrarily set
f/Fl,..., =n) = u whenever one or more of the arguments is . In the
strong evaluation such a problem does not arise, since f is specified
as a mapping of (D+)n into D+, and therefore f(!l,..,En) is known for
all combinations of undefined arguments. Paragraph &.<.5 will discuss the
relations between the two kinds of evaluations.

We will use later the concepts of correct and compatible terms.

Definition: A term 1 (F,x) 1is correct iff:

a PN i
)

+ s +
vfzpfn'D s HWEG (D , ¥ (f,F) e .

51




In other words, the strong values of ~ always belong to
& . Notice that every subterm of correct term is correct.

Definition. A temm (F,x) is compatible jff:

GT .- e ' - #
Vhe el (D), ¥E & (5", WeaH) &
+
In other words the strong values of - always belong to po,
2551 Yunctionals associated with a term.

Let - be a correct term, as defined in the previous section.
Corresponding to the two ways of evaluating «+, there are two functionals
that can be associated with «:

(a)

Corresponding to the weak evaluation we associate a

functional, denoted ~, which maps any partial function

£ ¢ pf(n" - )

T,

f e pfn'D’ into a partial function

defined by:
vBe 0" T (£ (&) =Y .

=

Corresponding to the strong evaluation we associate a

functional, denotLed =, which maps any partial function

L 2 - oF
f & pfn D into a partial function T & e BB \n_”

>

defined by:

.‘_'.-;:{_ (D) D F O f) 'T:)z:';/f’;.).

1f, in addition, + {ig compatible, then =« is a functional over

is a functional

3!

pfn'D), (i.e. a mapping of pfn(b‘ into pfn(D)), and

*.
over pfn/D Ys

' 5 n \
L The fact that T [f] ¢ pf () L when r is correct comes from the
fact that + correct implies:

for any f € pf D), for any E 3 (8,8 ¢ A+, and from Lemma
. n
2.3.5.1. below,

r\él

B e E————



doAk 'Recursive definitions' and their fivpoints.
We call 'recursive detinition' an cupression of the form
Fx! = 1 F,x)
where - F,x is any compatible term, as defiied i1 Paragraph 2.3.2.

Corresponding to the two functionals associated with -, oOne
can define two different classes of fixpoints of a 'recursive
definition':

‘a A partial function f{ in pfn(D) is a weak fixpoint of

the 'recursive definition F(x) <= ~(F,x iff it is a

fixpoint of ~ ji.e.: ¥ reD; £/¢7) 8.8,
Y . ;
(b) A partial function { in pfn;D ) is a strong fixpoint of
the recursive detinition F’;; <= w'F,;) iff it is a fixpoint of ¥ s
- + n - el 1
ides: VB & 1D 2 (E) = TUEE) -

The following section discusses in particular relations between

the two kinds of fixpoints.

B ) Relations between the two types of evaluatjons and :ixpoints.

ot
Let us denote by f the natural extension of a partial function

p +
f c pfn-D), i.e. £ is defined by:

i
imal
W

= ¥
(vicd: f@
| 2 pt B Uit
( ¥Ee"N\D)f F) 2y

Then we have



2.5.5.1 Lemma: For every partial function f ¢ pf (D), for every
— n

n wom Ry
Fe€Dbh, for every tem -'F,X

= +
T(£,E) = WL LE).

Proof: By structural induction on -.
i) = (did) < = x,, v =€, = =g i trivisl.
iv) » =g ~1,...,7p . By induction hypothesis, the vectors
. . o -
CF (BB yuue i, £,8)> amd < 71 f ,F ,...,%; f ,¥ -are equal.

Hence if they do not belong to Dom'g T f,F) Tt ,E) % d,

and if they do:

FEE) = (¥, (2,8),....%.(L,E))
; LT, p

+ - B I ek
g‘?lf ol iy .’7P £ o F
= "i:f ’?:J.
v 7 =R '1) ')'n :

Again by induction hypothesis, the vectors

2 - = H = oz ¥ =
Tl 85 £, & and Wy & B oo T 0 oF

/iy o & ey }) b 1

.t .on
are equal. [f they do not belong to D , then

If they do, then two cases arise:

" ol A de
1 For some i, | « i < n, 71 fi,T) = ;i Mg ST =im
Then:
S + 4 P = L =
KL T) 3 8 (T lf F)peeny, T (f ) definition of 7
1 n :
w definition of i

% 2§, F) definition of =



o= ~ T
& For every i, I <« i < n , *i £.€ v ) B
Then 71 iU SO [ t,¢ ¢ D" and we have:
b + Tt ~ b R o, ~
= @@ A 5§1~f ,E\,..., Tnkf ) definition of #
~ + z/+ e e LS +
f *l‘f G oo ,n_f oE definition of f
B if Ti”f,?\,..., :A’f,?)' induction hypothesis
_':‘f’g) definition of =

However there is in general no intcresting relation between the

~
-~
-~

fixpoints of * and the fixpoints of as we show below.

2.3 A trecursive definition can have a weak fixpoint and no strong

fixpoint.
Fxample: [et us take, F(x) = 7(F,x) whire «(F,x) = g(F(y)).

Interpretation: D = p = {integers)

B

g” (Lif¢€D

W

g((L/ 1.
Now f ¢ pf D , defined by: v F € D f(f) = 1, is a fixpoint
of *, hence a weak tixpoint of the 'recursive Jdefinition'.

However, this 'recursive definitiod has no strong fixpoint, for

+
suppose ¢ € pf(D ) is such a fixpoint. Then:

VEe D+ TJE 2 Tle,E definition of a strong fixpoint
z glclw)) . 5 2.3.2 (b)
Hence, we have: ¢'u, - gleglw))
Now if olw) = w we get gly) = glw) =1 : contradiction ;
if olw) g0 we get olw) = w 1 contradiction ,

41




2.3.5.3 Conversely, a recursive definition can have a strong fixpoint

and no weak fixpoint.

Example: Let us consider F(x) = 1(F,x), where:
(I',x) = h AF'QQ,F(X)).

]

Interpretation: D = A = (non negative integers}. Let Dom(h) = D

1
O

h'w.w>
h= Jh(p,E)= g ifreD

h(#,") =2 0O otherwise.

]

Then, ¢ € pf'D+f defined by: v ¢ ¢ D+. w(®) = 0 is
a fixpoint of > , since:
veen %) . hlgle), o)) § 2.3.2 (b)
h(0,0; definition of ¢
= definition of h
= F) definition of ¢ .

~

However, this fecursive definition' has no weak fixpoint for

suppose ¢ € pf(d) 1is such a fixpoint. Then:

VeeD y(g)= higy(e)) Ya&.2.2 )
- 1f yle) - w, then = h(y,y = O:contradiction ;
- if y(F) € D then y(€) = 4 ¢ contradiction .

2.%.5.4 Finally, a 'recursive definition' can have a weak fixpoint

and a strong fixpoint which agree nowhere on D, altnough

they are both completely defined on D.

Ex: Let us consider the 'recursive definitiod F(x) <= r(F,x),

‘F(w)), with the following interpretation:

where 1(F,x) = ki

~ 0 o~

s
D=p-= {jntegers}. Let Dom(k) =3 D)

L2




Now the only fixpoint of ¥ is €)' pt ' defined byv:

¢ pt D defined by:

-

Thus, even though the definitions of ~ and ¥ appear to be quite

~
~
=

similar, the functionals 7 and sometimes behave quite differently,
In the next section we define the computations o: a 'recursive

definition.

2.4 Computat ions

Computations of 'recursive definitions have been discussed in § L2,
We will give here @ more formal model.
Zvoo1 Notations.
We first necd to define the notation o F, where E is a short

notation for an n-tuple f tormsg - EI’B?""’En . Intformally,
o F,8) is the term obtained by suhstituting x, by B, for all

occurrences of g in 4 F,%., for every i, 1 « i < n.

Formally, can be defined by structural induction in the

‘.’l
—
-

'

obvious way:

n
«
—
¥
'

A
=
T
=
n
=

L
]
m
¢ »J

(1' if [’

1

ii) if w=ac C ({i.e. constant term), then: 4 F,8) = a

ws

iii/ if o= o, then ) F,-E-‘\ * a5

’
~

(iw) §f .= 8 ql,qﬁ,...,qp), with g ¢ Gp, then:

O’")Z = E(O'I'F’B>)"') Cl'p\r"a)) ’

b3




(v) 1if 4= F(Ql,gg,...,an), then !
«(Fs8) = Flay(F,8),..,0 (F,B)).
A frequent case is when g is an n-tuple of constants, i.e.
Bl = S with c, C D+, for every i, 1 < i < n,.
In this case, we denote E‘= "El,fij...,fn > and a(F,E) is defined as
above with E x é.

2.2, Computations of ,(F,x) for x = ¢

Definition: An elementary computation of a term o(F,x) over some

- - =7
interpreted alphabet, for x = ¢ ¢ (D )n, using a'recursive definition’

F’Q) <= +(F,x), 18 a sequence of terms fai, i > 0} such that:

(a a, * G(F’E) as defined in 2.4.1.

(b) For every i > 0,
8 .Y
- either (bl): aj41 € S v % where g 1is free of x,

and the equation:

o)

= +
f, } - J/f, ) holds for every f € pfn(D )8

.:/

B
The notation S5 , has been defined in ¢ 2.2.4, and the notation

w(F,) in f2.4.1,

A term g 1is said to be free of x if it contains no instances of xj,

for any j, 1< j <n. Therefore, if + is a subterm of oy it is obviously

free of x.

If a term p 1is free of x, ?Kf,i) does not depend on E, and we denote

it by %E(f, ); similarly ' f,F) does not depend on ¥, and we denote it by

(1,

Lh




= O fb@id € D o o0, .

Definition: A computation of a term Q(F,;) over some

- - +
interpreted alphabet, for x = ¢ ¢/D )n, using a 'recursive

definition' F(x) -= +(F,x), is any sequence of terms {ai | & » 0}

¥
which is a subsequence ~/ ot an clementary computation

rej | 3 201 of &(F,%), for = = ¢ using the same 'recursive

1]
©
.

definition: and such that a,

24 .3 Terminating computations.

Let ,'F,X) be a term over some interpreted alphabet and a € A

be a constant. A computation fai, i »0) of ¢ is said to terminate
lerminate

with a, if there i- some n, n such that o = a. 2 computation
[ad n ~

{gi, 1 20} of 5, 1is said to terminate if there is an a € p such that

the computation terminates with a. Note that a is forbidden to be w) .
~

:/ By that, we mcan that there is a mapping s of the nonnegative integers
into the nonnegative integers such that :

(a) for all i » 0 ; Ps’i) = »

(b) for all i, j 20: i ~» j = s(i) ~ s(j).

The purpose of introducing these subsequences is to allow one to "skip steps"
during a computation, or replace some term £ by b if a computation of B
is known to terminate with b, for example from prévious computations.,
[Terminating computations are defined in ¢ 2.r.5.]



Comments: Notice that according to our definition, a computation can
"terminatc¢' and be infinite at the same time. (In fact,
technically, all computations are infinite). The point is
that, for terminating computations, only a finite initial
subs-quence is considered significant,

2.4.4  Computed functions.

As emphasized in Chapter 1 there are usually many possible compu-
tations for a term. Computed functions of a 'recursive definition' are

defined by considering all possible computations of F(x) for X ranging

through p" or D+'ln Let X be fixed to some € in D" or (D+)n. Then

it is possible to associate values to every computation of F(Xx) for

X being ©: 1If the computation does not terminate, then the associated
value is 4. If the computation terminates with 3 € C, then an associated

value is a. 'Note that, so far, there might be several values associated

to a given computation!. A computed function is defined as being

; +
any partial function (in pfn D) or pfn ' )) mapping T (in r" or

"D+)n) into a value associated with some computation of F(®) for
=T,

Another, equivalent, way of stating this is:

Definition: A partial function f € pfn(D+) [resp € pfn(D)]

is said to be a computed function of a‘recursive

L6



' b= n .

detinition over 'D resp wver D ST b s Ul
es 1 o T =
gm0 -vakny G« D resp ¢ D
i it 1+ T 4 g then there ic a computation of
=, o -~ 3 0 . . I3 . ‘'
E{s] Liier o ¢ asing the recursive Jefinition

which termirates with F(T).

T W

.
i< ; then there is a computation of

- —— . 4 . LI} 13 . g
for = € using the recursive definition

which does not teminate.

Notice that, becausc
non-constant term - has no!
the sequence . | i 1

is a non te¢mminating compu

of terms o, &, *: e 8%
specification of ¥, I' % h
Hence if f and g are

and if g i a computod fun

<05 Innermost ¢omputati

of the way we have defined substitutions any
-terminating computations: a trivial example is

detined bv 4 = % SoE Bl B0 whiitdh

tatior [ Ihis is because, Jor any triplet

= M Voo & e o s
fram o0 sl Longequent , LU any

as Non=torminating compu:ati:ons.

two partial functions such that | « 3,

ction, I is also a computed functicr.

ons.

We detine innormost computations as comput .iions in which b2)

of ¢.h,? 15 onlv applied whern g is a» r-tuple of individual constants

ir C. In other words, they arc those conputations in which only

call by value 1is permittel.

In the courtc¢ of Chapter |, we will define other types of

computations, as necded,
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CHAPTER 3%

RELATIONS BETWEEN COMPUTED FUNCTIONS AND FIXPOINTS

Introduction

Computed Functions and Strong Fixpoints

*2.1 First Substitution Lemma for Strong Values
3.7.0 Second Substitution Lemma for Strong Values
3.2.3 Theorem 1

Innermost Computed Functions and Weak Fixpoints
3.5.1 First Substitution Lemma for Weak Values

5.3.0 Secoud Substitution Lemma for Weak Values

5+%.%5 Theorem !
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4.1 Introduction
In this chapter, we essentially present detailed and complete
proofs of Theorems 1 and . discussed in Section 1.) of Chapter 1. It
should be emphasized that there ar: no restrictions on the 'recursive
definitiond to which these theor: pply. (For example, the base functions
of the recursive definition do not have to be monotonic.) They might
not even be computable, and the results would still hold.
The proofs ot lhcorems 1 aund are very similar: We prove three

Lemmas in Section “.. trom which Theorem 1 follows easily. Then we pro-

ceed in an analogous tashion for Theorem 2, in Section 3.3,

5.2 Computed Functions and Strong Fixpoints

-

In this section we first give two lemmas which essentially express
(semantic) stability properties of the strong value of a term when
certain ‘syntactic, substitutions '  are performed in this term. We will
use them to prove Theorem 1 in the last paragraph of this section.

.1 First Substitution lLemma for Strong Values

For every triplet of terms «:, B, 7, for every f ¢ pfn(D+), for

KB

every ¥ e'L+b{d}'n, il f

’

= 2l L= (t
f,¢, =p f,£), then for every oesﬁ 7 the

identity o(f,E) = 7/f,E) holds .

Comment: Informally, this says that substituting one term for another

within a third one (no matter how many occurrences are substituted

for) does not alter the strong value of the latter

term it the strong values of the two former ones are the same.
Proof: Let f be an arbitrary e¢lement of pfn'D+), E an arbitrary n-tuple

" r n o
in ‘ptygd),)", and «, B be two arbitrary temms such that

Z/Substitutions within terms have been formally defined in paragraph 2.2.4
(Chaptar 2 ).

2
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& f,¥) = b {.,¥ . We show that, for every 1 and every ¢

2

in SFT the identity = f,F) - +/{,¥) holds. 7This is equi-

valent to the stated Lemma.,
We first show as a separate case that this identity holds for

Then, using structural induction,we show it for every .

Case 1: = ¢

Y. - )
Then, by 2.2k (a}, be fa,]

Therefore, either = + in which case the result is trivial, or

o = « 1in which case:

~ =

5(£,F) =2 ¢(f,F)
B E,® Hypothesis of the Lemma
7 £,%) lypothesis of Case 1.
Case 2: - # &

We now use structural induction on + to show that for every temrm

v, T # 8 implies tiat the property holds.

(i) $ii), dpd (iii) 14

is an individual variable X, T e U et ol

or if ~ is 4, or if ~ is an individual constant in C, then sszq = I,
@ !
from the definition in 2.2 (p).

Hence, ¢ = ~ and the property is trivially true.

/e

iv) + is of the form g /- )

1 72’.”’*13'. Let o€su~'.

Because ~ # 8, casec b-iv of the definition of substitutions in Section

2.2.; applies, and we have:

= glg, o~ here, f s 02 &
(R cl. gr ey p wnere, or every 1, 51 Dk cie SQT]'_'

Now, for cvery i, | i " p, we have:

= 3 ~ .
Ei f’!! fj f)!/»

50



either because of Case ] if " B, or because of the induction
hypothesis otherwise.
Hence, we must have o(f,F) = 1 f,€) because of the definition of

the strong values, Section 2.%.7 case b-iv.

B o B o T
= i ‘'n

» N ln
In a similar way, let c¢ 57 We have (0.0 44 b-v):

e e \ o » 0 (1
c = F 710 vt where, for every 1, 1 <i < n, oie Ssri.
Again, for every i, 1 ~ 1+ n, we have Cl (f ,g\ = ;i(f,z) , and,

by 2.2.2 b-v, this implies ¢ x,f: = w’f,E;

0

“«.. Second Substitution Lemma for Strong Values

Let = = :71,7 ,...,*n) be an arbitrary n-tuple of terms and

be any term. Then, tor every  fe pfnfD+,, and for every"Ee (A+U{d})n,

I

we have:
e =2 < T = »
3B, %) (£8) = alF, ~l’x,gl, ’”n'f’g) ) =

Comment: Intormally, this property means that one can equivalently:
a) First substitute T, for Xg everywhere in o,
and thencompute the strong value of the resulting term for
f and ¥ ,
or: (b) First compute the strong value of each 7; for f and ¢, and

then compute the strong valuc of o for f and the vector

ot values of " just computed.

%
‘

~ The notation 2(F,T) has been tormally defined in Paragraph .4 .1:
(¥ %) is the term obtaine! by substituting x;, by 7y for all
brauzmenpas of w, 0 @ (bor vty 4, L s 0% 6.

il



Proof The proof is lengthy, but casy by structural induction on a.

Let us denote the vector ‘?1’1,?:,...,i)'f,97‘ by E,
: : :
P
- -a-/' =
v(F,= [,¢ by 1.h.s.. and
4 RED ) {,8) (€,5) T oh.s.
i ) )
Case | cr v, for gome §, 1 = 1 g
89S 1ohy ; 2w 4
hen 7)o@ s, by 241 (L), and:  L.has #F(LE);
i
o litho Sl S0t E) . by finR (hei)s 88 Lahts r.h.s

Case 'ii) o ¢, for some¢ c¢ in C.

~

Then o(F,%) = ¢ by 2.1.1 (i1) and: 1l.h.s = ¢ by 2.3.2 (b=1i) ;

r.h.s = c, also by 2.3.2 (b-ii), so l.h.s = r.h.s .
Case [iiii o = 4

In this case, l.h.: = r.h.s =4 by an argument similar to

case |[ii).

Case iv g =2 '1”14’”"’13'
We have n ¥, = g ,I'F,V),...,Jp F,=)), by <.i.l-iv.
— _
and so l,h.s p 1,7} (LX)
,_,,,:'.'_: "‘{_ e
T8 " F’:)’...’WP[F,:" f’i:-\)'

Let us denote, for every i, 1 =i _ p., o /F,7, (f,®) by a,.
Then, by 2.75.. ‘b-iv , i the vector /al,ap,...,ap\ does not

belong to the domain of ¢, ! .h. d. If it does, l.h.s =

g’al,a?,...,ap'.

On the other hand r.h.s - 5 {,F)

P
- +,1,r, ,...,r;PJ (1. %)



Now, by induction hypothesis, for every 1, 1 <1i < p, we have

-, = :
(f,t) = ai‘F,?\ f,F) = a, as defined above.

s
v &

i

Hence, by 2.%.0 'b-iv), if the vector (al,a,,...,ap) does not belong

to the domain of g, r.h.s = d. If it does, r.h.g =~ g(al,ak,...ap).

S0 in both cases r.h.s = 1l.h.s.
Case (v) o =B Ty a"".'n

The proof is very similar to the previous case. We have

A = T " P, ,...,qn'F,?} by 2.i.1-v, and so
:’?‘2’
l.h.s ol P
//_’:.‘" e : ’
F 11'}"-"_ ’ ,orn'F,‘r)) 'f’!)
e
Let us again denote o4 S £,) by a, for every i, 1 sigdm,

/ ' +
By 2.35.2 'b-v), if the vector al,az,...,an‘ does not belong to (D )n,

then l.h.s d. If it does, 1l.h.s = f‘al,a2,...,an

On the other hand, r.h.s = F(£,t)

— T —

= F(Ulsfth---sdn/ fsf 0
Now, by induct:on hypothesis, for every i, 1 Z 1 - n, we have
e .
E&(f,t) qifF,r) (f,r a, as defined above.

Hence, by 2.3.2 (b-v), if the vector /al,a,,...,an\ does not belong
4

o
to (D )n, then r.h.s = d.

If it does, r.h.s f'al,a ,...,un).

Again, in both cases, r.h.s ) 3

\0
N



3.8.3 Theorem |
We now prove i(heorem 1 which was stated in Section 1.0,

We need one preliminavy Lommas

Lemna: Let O[T x he a corres! term over dan interpreted alphabet,

3 =N 4 — ¥ . . -
¢ be an element of " ang, HE) BE qUE s be a recursive definition.
Let {a |i » 4} be an arbitrary computation of @ for @ = ¢ using the
L i —
recursive detinition. { . lor every fiwpeint & of v, ~ and for &l
. g L 7
i 20, tlp.e L

Proof: First remark that it is sufficient to show the property for
clementary computations detined in Section [ ...), since the general

computations are subsequences ot clementary ones.

Let gz b & fispoine af 2

1 ‘ Y s . = A + g

We begin by showiny that, tor every i > ', it (g, )s & , then
ai ’-‘«' li"l "~‘ L,

Because o1 the opentne remark, we only have to consider two cases:

Case a i )
p2- LRS- P8 1+1 l'
| i
where , ¥V t ¢ p!n il g PR

In this case, a dirvct application of Lemma ‘. .1 proves the property.

T F B

\

Case b 2 40 ESF'E\ & 4

i« ¥

In this case, we first observe that, if F:E' is not present in

7, , thén i = 1, and the property is trivial. 1If it is present in G,

i’ i+] i ks > P S

then the hypothesis 1 ..  « Lt Implies thae, for evers j, 1 <] 2mn,
- 5

v, functional associated with -, has been defined in = .7, b,



EJ(¢, ) ¢ b*. [Otherwise the subterm F(B) would evaluate to 'd', and
hence so would 1 as can be seen easily from the definitions in 2.3.2 b].

Therefore, we have:

o—== e
i =\ 7 U - 7 A 2 \ %
T(5,3) (., B T, &} o i Bn\rp, ) J LLenma 7,00, 0
ol8 (o, ),...,én‘w, | w is a fixpoint of 7
i
_—
i 8 00, <4 8 b=y

And again, an immediate application of Lemma 7. .1 proves the property.

Now a trivial mathematical induction on i proves the Lenmma, since

4 ’

= 2,0, and : has been assumed correct, which implies a(p,c)e a%. o

QU
3

We can now state and prove Thoorem 1:

& q q o ]
Theorem 1: For every 'recursive definition, every strong fixpoint

; : : n
is an extension — of every computed function over (D),

el = =0 ' : ] '
Proot: Let ¥ X <= =~ F,¥) be a recursive definition, let f be

n
pt

one of its computed functions over and let w©» be a fixpoint of 7.

Let # ¢ /p* " be such that t7¢) # w. Thus, from the definition of

.

a computed function, we know that there is a computation {:ili >0} such

o L e
and n s

,

that @, = F for some finite k.,

Py

Now, by the previous lLemma, we know that, for every i > 0,

4

, e 2} ; —
= ; X 2 il P
i ) Ll |£ PLs )

-

In particular, we get that ﬁk 5, ) = o/E). But since @

fE),

we see that f'F o(€), which is what we wanted.

e
1 f,g are partdal functions of S into R, g 1is an extension

of £ ibf: ¥ % ¢ 8, Elw L f'x) = g(x). Sce Appendix 1I.



Some consequences of this Theorem have been stated and discussed in

Section 1.5, and we will not 8o over them again here. They all follow

immediately from the Theorem.

7.3 lnnermost Computed Functions and Weak Fixpoints

In this section we derive the analogous of Lemma 7.0.1 and *.o . for

o e

weak values, and then we prove Theorem 2.

7.1 First Substitution Lemma for Weak Values

For every triplet of terms %, B, =, for every fgpfn(D), for

2 . - s o ~ . "y
every & ¢yt Vap)™, if a(iL) = B(1,€£), then for ecverv ¢ ¢ S_7, the
identity C'f,f' T{f,7) holds.

Proof: The proof of Lemma %...1 carries over completely by simply

‘ v +
changimg 's' by 'J', '2.3. (b)' by '2.3.2(a) 'D" by 'D, and'strong'by 'weak'. —

3.3.2 Second Substitution Lemms. for Weak Values

= o

Let = »T »eee,7 > be an arbitrary n-tuple of terms, and
1’ n

¢ be any term. Then for every f pxn(D) and for every ¥ ¢ (A+U[d])n,

we have:
S N——

S

a(F,5) (£,8) ":'f, «:lff,g"\,..., ?n(f,g) =

Proof: The proof is by induction on <« and parallels that of
Lemma ’.2.2. Let us again abbreviate the left hand side and the right
hand side of the identity which we want to prove by l.h.s. and r.h.s.

respectively. Cases (i) through (iv) translate directly and we won't

repeat the derivations here.
Case (v): u = F(dl.q ,...,an)

We have 4/F,7) = F ea F,?;,...,on(F,;)) by 2. .1=v,



and so:

G (£.0)
= Fla, (F.7) o TF) ()

N s
Let us denote ai(F,F) (f,f) by a,, for every i, 1 <i

l.h.s

(L]

n.

=

By induction hypothesis, we also have ‘Ei“f,E) =a. Three subcases

arise:
- EIESE ’ai,ar,...,an) does not belong to tD+)n.
Then, by ©'.5.2(a-v), l.,h.s. = d.
On the other hand, r.h.s. E';(f,t)
= F(a,u ,...,un) (f,t)
d, by 2.5.2(b-v) »

v-(ii): For some i, 1 < {1 < n, a, = w.
Then, by 2.5.2(a-v), l.h.s. = .
On the other hand, r.h.s. = g by 2.3.2(a-v).
v-(iii): Otherwise, (al,a;,...,an) ¢ D" and we have:

l.h.s. = f’al,ag,...,an) by 2.3.2(e-v)

r.h.s. f(al,g.,...,an) by 2.5.2(a=v) . =

%.7.3 Theorem :
In this section, we prove Theorem 2, which was stated in Section
1.5. We need the analogous of the Lemma in §3.2.3.
Lerma:
Let a(F,;} be a term over an interpreted alphabet, T be an element

" and F(x) <= 1(F,x) be a'recursive definition. Let {ai|i > 0}

of D
be an arbitrary innermost computation of @ for X = ¢ wusing the

\recursive definitiont Then for every fixpoint ® of 7, and for every

iSO

CI(CD,E) = Oi{w» ) e

o7



Proot: Again the proof closely parallels that of Lemma 52l
Notice that we do not need the correctness o! o here. The same opening
remark applies, that is, it is sutficient to show the property for elementary
innermost computations.

Let @ be a Tizpoint of 7. Again, we first show that, tor cvery

3 ~
{il > 2 - : on
) - . NSt AT

= i ‘ 1+]

Only two cases drise:

Case {a): . .g S 1 :
S {41 SQ where

¥ fe pxn’n+ , e, V=8, Vs
In particular, taking f = g+ (where gt is the natural extension of

=, defined in Paragraph . .- we have:

i

E /ot ) = t;+,

- )

<

Now, using Lemma . .7.° .1, we get that:

Bl Vol
Wi e YY] R )

»
and using Lemma “.7.1, we obtain the desired result—

Case b :

T"FIE'
et € SEp) 9

where b is an n-tuple of constants bi in C.

—~ Note that, in fact we could use a weaker condition to detine "innermost
computations over DP", by only requiring that the weak values of

P and 7 be equal in 7...’’bl;, instead of the strong values. The
resulting Theorem ' would be slightly stronger, since it would apply to
a slightly larger class of computed functions, but on the other hand it
seems reasonable to consider only those "innermost computations' that
are also '"computations'.



e - - T

We have:

) ok e ’ i .
vIF,b) ik et bl(¢. ,...,91 P Lemma 7.7,

O 1 DRRERR o b ) SHe asid
T 5.b Lemma - .%.5.1
2 wi'b ¢ fixpoint of 7

= ¥(b) (o, ST TV

Now, using Lemma “.7.1, we obtain the desired property.

The Lemma follows by a trivial mathematical induction. —
Theorem .. is now easily derived:
Theorem :

For every‘rccursive dcfinition: every weak fixpoint is an
extension of every innermost computed function over B

Proof: The proof is entircly analopous to that of Theorem 1,
replacing '=~' by '~', 'strong’by'weak, 'Lemma 3.7.3' by 'Lemma 3.3.3',
and 'computation' by 'innermost computation'. [Actually, we do not even
have to use the !tace that 7';,5; : Y, since the hypothesis of Lemma 9o 505

B

is slightly weaker than that of Lemma ...~
=
The consequences of Theorem ”, and of coubining Theorem 1 and 2 have
been mentioned in Chapter | and we will not repoat them here, since the

proofs follow trivially from the theorems.



'

L.k

CHAPTER

MONOTONICALLY STRUCTURED RECURSIVE DEFINITIONS

Introduction
Monotonicity. Continuity

L.2.1 Ceneral Definitions

Ui i Monotonic and Continuous Partial Functions

'".2.% Monotonic Functionals
4.2.L Continuous Functionals
Monotonically Structured Terms

L.3.1 Definition

4L.3.0 Monotonicity of @ f] and «

L.%.72 Monotonicity of aff] and
[ f] and

L.7.5 Continuity of I f] and «z

Qu

L.%2.h Continuity of

Existence and Characterization of Least Fixpoints of Monotonically
Structured Recursive Definitions

4.b.1 Least Fixpoint; of Monotonic or Continuous Functionals
L.4.” Least Strong Fixpoints Theorem ?)

b.i.?2 Least Weak Fixpoints (Thecrem L)

60



4.1 Introduction

In the vwrevious chapters we have shown that the computed functions of
recursive definitions were 'less than or equal to' the fixpoints of the
recursive definitions, in the extension ordering, in a sense that has been
made precise.

There are evidently situations where computed functions are strictly
less defined than the fixpoints: a trivial illustration of this is provided
by our previously made remark that the totally undefined function is a
computed function of all but the constant recursive definitions.

Of course, what we are interested in is to compute least fixpoints
we know that the others cannot be computed functions). This is obviously not
always possible, because some recursive definitions do not have least fixpoints,
as has been shown in Chapter 1, (Section L&) s

In this chapter, we give sufficient conditions on the recursive
definitions which guarantee that they have least fixpoints of both types

‘weak and strong), and we give a characterization of these

fixpoints.

L .2 Monotonicity. Continuity.

L.”.1 General Definitions

Let A,B be two partially order.d sets, and let us denote by
« the orderings on these sets. A mapping m of A into B is monotonic
iff it preserves the orderings, i.e., iff:

va,b ¢ A, a< b -> m(a) <m(b).

Let A be a partially ordered set. A chain in A 1is a subset

of A on which the ordering is total. A is chain-closed if every chain
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in A has a least upper bound *' in A.
Let A and B be chain closed. A mapping m of A into B is
continu?us iff, for every chain K 1in A,
m(lub(K)) = lub(m(K)),
where this equation is intended to mean that m(K) must huve a least upper
bound in B, and that it must be equal to m(lub K,).::/

Notice that continuity => monotonicity: Let m be a continuous

maﬁping of A into B, and let a,b ¢ A, with a < b. To show that
m(a) < m(b) observe that {a,b} 1is a chain in A, whose lub is b.
By continuity, {m(a),m b)} must have m(b) as a lub in B. This implies
m(a) < m(b).
The converse is not truc in general, and we shall see examples of
that in the sequel.
Finally, let A b a partially ordered set. An element w in A
is said to be a least clement of A if VYa ¢ A, w « a.
Let us now use the previous definitions in the context of partial
functions and functionals.

4.2.2 Monotonic and Continuous Partial Functions

We have seen various kinds of partial functions in the previous

chapters:

= . n ": .
Partial Functions of D into D §,.3.g(a) Function

Partial Functions of (D*)" into D §2.3.2(b) variables

:/ The notion of least upper bound of a subset of a partially ordered set
is defined in Appendix I.

*#/ If S <A and m is a mapping of A into B, the notation m(S)
represents the set {m(s) | s ¢ S}.
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2 0 i 5 .
Partial Functions of I} into A JGeata) s ]
+.n | . =
Partial Functions of ‘D' ) into A Ge3lb)Y: T
Partial tunctions ot a Subset of

;+ P into 2 3L : llase tunctions.,

[

All these can be considered as mappings of a set A into a set B

L]

where A and B are subsets of at P jor some p - 1. We will define

an ordering on such subsets in the following way ‘sce Scott ‘1w . ).
First define an ordering ‘denoted +) on £t byv:
W< noand wa x.

Then extend this ordering to 'L+‘p‘ for any p > 1, by:

\..‘ X

(L}
[

Nl PADE =R = e ; = p 3
X,V elA ST A LT s W and 'x <y , and....and
Finally also denote =+ the restriction of this ordering to any
subset of st P,
Now the general detinition of monotonicity given in ~.. .1 carries

over immediately to the various kinds of partial functions.

" % n ]
First remark that f ¢ pfn Dy and 7 0} ¢ pLD == 4} are always
: : n . 5 n
monotonic: since D does not contain w, the ordering on D is such
that x <y => T = ¥.

Then: f ¢ pfn Dt is monotonic iff:
- = 4 1 L = —_
Ly g W X =y == fix 7 BG

-+ A) 1s monotonic iff:

s n - 5 SRR = 4 S
v,y e(IY), ¥ F => 1 f)(X) < 7] £](F

SN/



g ¢ pfihom g -+ 1) is monotonic iif:

Vx,y &« Domig), X <y => g(i) % g;y) )

Note that, for theuse partial functions, monotonicity implics continuity.

The key fact is that, in this case, A only has finite chains. In \A+)k,

the longest chain has k+tl elements). Then, let?
S N Xy PR TR xp, where p 2 k, be
a chain in A, and f{ be a monotonic mapping ot A into B.
We have f/lub(K)) = flxp).
But f(K) = {f‘x'),f(xl),...,f(xp)}, and, by monotonicity
fx )~ f xl) <...% f/xp:. ffence lub(f(K)) = f/xp) = f(1lub(K)).
Let us now make some more remarks on monotonic partial functions,
especially on the given tunctions. (The others are special cases of those,
anyway | .
As noted in Section 1 Chapter 1, any g such that:
wX ¢ Dom g (3Fi, 1 _ i _.n :Xi w) => gX) !
is monotonic, because in this casc X<y and x#Yy => 8 ) = ws
So any function x whose values are known tor defined arguments
can be extended on undefinec arguments in such a way that it becomes
monotonic. The easicst wdy »f doing it is by setting g %) = w whenever

at least one of the xi's is w , which makes g monotonic as noted above.

This is called the natural extension of g.

This is not the onlv way. For example, il ; 1is a constant function

5 : n : =5 n 0
whose domain is 4 .., Yxeb , BX) a, with ag.), then

n —_— n — .
o) by: W% & (%) g'(%, a 1is a monotonic extensicn

g' defined on ‘L
of g which is not the natural extension.

In general, we mnay observe that for a function g to be monotonic,



it is necessary that whenever g(¥) = a # w, for every y » X, g(y) = a.
Hence it X has at least one undefined argument, tor every y in the domain
of g which is more detined than X, g(y) must be cqual to g(X). Using
this, one may devise a way of monotonically extending g's which satisfy
some equations. This can be stated more formally, but examples will convey
the idea more clearly:

(a) Let us consider the binary multiplication over the integers

Z; this function satisfies the equations |

YxeZ2 0¥ = x"0 #
Hence we may extend '*' on (Z*) by:
w = w'0 =

This is a monotonic extension, which is not the natural extension. On all
other combinations of arguments involving w, '*' must take the value o
if it is to stay monotonic.

'if...then...else...' connective (See Paragraph

(b) The sequential
l.j.f) is another example of a monotonic, non-natural extension:

Vv xegD: if T then x else w = x

corresponds to the equation:

Vx,yeD, if T then x else y = x .
(c) The parallel 'if...then...elsc...' connective (See Paragraph
1.72.2) is still a further monotonic extension, where:

Y x e D: if w then x else x =X
corresponds to the equation:
Ve ng,F],VxeD, if t then x else x = x.

L.?.2 Monotonic Functionals

We have seen several kinds of functionals in previous chapters,
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for example, in

Funct ionals over pI“‘D: ~, for compatible -
Funetionals over pln D*) +, for ‘compatible -
Functionals ot Pt D) inte pf(D"= g) -, for correct -

+4 N -~
Y= 4) 7, flor correce .

Functionals o pfn’Dﬁ into pf{ (D
and we will see some more later in this chapter-.
All these tunctionals are mappings ol sets of partial functions into
sets ot partial functions. We know that the extension */ relation < is a
partial ordering on those, and therefore the general definition of

monotonicity carries over literally in this cdase.

. . Continucous Functionals

As in the previous case, the general definition of continuity
carrivs over immediatelv in the case ot tunctionals., Let A,B be chain
closed sets of partial tunctions ordered by the extension relation <. Then
a functional ~ of A 1nto B is continuous itf, tor every chain K in A,

m{lub{i)) = lub(m(R)},

i.e., as in the general case, the right hand side is required to exist and
be equal to the left hand side.

We will recall here a property of chains and their lubs in the
case ot partial tunctiong which will be ¢! use later in this chapter. The
proofs o! the property appears in Appendix [,

Property: Every chain K in pf(S +R) has a lub, which

satisties the following:

Z/The extension relation has been defined in . .7 4 lootnote. See also
Appendix I.

6



¥§ &8 U ¥ ok, 7€) = w then TublR)(E) =,

otherwise,
Wi ¢ K, E(E) # %, Lub{K)(£) = £(&),

If, in addition, every element in the chain is a monotonic

partial function, then lub K is monotonic,

Hence pf’S . R) is chain closed, and sc is nt(§ ),

[97]
=

where mt S . K, denotes the set of monotonic partial functions ot
Supposing the chain K s “i P20, with i €j=» f < ¢

then the above property implies the following:

(P) VE ¢S, there is |

\ -

such that, i - i_, lubfK)(g) £ £

Notice that, in the case of functivnals, monotonicity does not

imply continuity. ‘tor cxample, denoting, 2 the set of the integers, and

the totally undefined function over z, let us define the functional -
over pf'Z' byv:

/1 total = i

vt € pf(2), ~(£) = ¢
_otherwise

It is easy to see that 1 is monotonic. However T is not
. . . . G . N
continuous ;consider the chain ¥ o: s)i 1§ o= WD o
(n < i -9

where fi n =
otherwise -»

For all i - 100 so  lub ="t

+

1 1

It

whereas lub K} is the zero

function , and -~ lub =

+." Monmotcnically Structured Recursive Detinitions

“.t.l pefinition
Let 1 F,%, be a term over some inte rpreted alphabet . We say

that & is monotonically structured itf the interpretation g of every g




Notice that
b

which appears in & is monotonic ‘as defined in L. . 1 !
subterms of monotonically structured terms are monotounically structured.
A recursive definition F X! = 1 F,¥) is said to be

%) is monotonically

N
T\l %)

structurced.
recursive definitions are o! special

monotonically structured i1t
ond these

Monotoniecally structured
ssess least fixpoints ‘Section .

interest because they po:

fixpolints are computable Chapter
We are now goiny to show monotonicity and continuity properties

of the partial functions and tunctionals associated with monotonically

structured terms.
W ) -and bt

o Monotonicity o'
Lemma:  Let be a nonotonjcatty structured, correct term.
Then, for every f ¢ Pl bt
1
f monotonic - i monotonic.
o} nt o 9 = = NURS ¢
Prool: Let 1t & pil )")  be mongteonic, amd lat ¢€,n g [DT) he
LLOOS q 3 \
such that 7 . -,
We want to show L) @Y 4 e 2l G
i.e. G(f.E) = WE, s 3 bl R R AR
We proceed by structural induction on p
Case (il: LB Thien T.E o e ] T and
= o i M i
: i i
Cas@ Lji]}: C ( Then ) AR (4 O
xdes 1Ll) &£
Case |iii) : U Then 1,? 71 F N t
Case iv, : BT, raid
o = - =\ =
1hen {8 gl "E,""';,l'f/
% g 71 7 7 e -, 1‘;f Induction hvpothesis and
] 5 . "
f mnonotonicity of
Al L and 7 have been delined in 2 . .72 b)),

*/For « correct,
+



1ie S

Case (v):

I n
Then ((f,¢ f’dljf,f), ,]n(f,E))
N t (4 IS ,7n;f,ﬁ)) (Induction hypothesis and
monotonicity of f)
{ 1,?;

Let us call mfn'b*;

‘ \ i, a = ¥
pf (D). l.e.: mf DT {f PL,

We have:
Lemma: Let ¢
is a monotonic functional of mf DY)

Proof: This says:

/

che set of all monotonic partial functions in

: Iy ]
f*9ils monotonicy .

be a monotonically structured correct term. Then Q

into pf((pH)" - L) .

g emf 07): f<g = A1 < g,

which is equivalent to:

vi,g ¢ mfn PF): tx g

>

v Ee (0H)7)

We prove the last pProperty by structural induction on 1.

Case ({): @@= X, Then G(f,F)  G'hJF) = € -

Case "ii): =c¢c ¢ C. Then y £,F) = & h,g; @

Case f{ii): u = L. Then = f.f, th,F) W o

Case (iv): «a = g‘wl, ,Jp .

Then, for all i, ! -~ i - p, 7i'f’~' < Qi h,F (Induction hypothesis).
Hence: g'llff,g;,...,tp f,g‘ < g al'h,g),. 0 ‘h,g}, (Monotonicity of g8),
i€, }’f,g) < (1(g,F),

Case (v): st e, L)

Ther, by induction hypothesis,
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Hence: T(fE [/, e . ...t fi,;:
1 8 n
< ey g T ,...,in 3,8 ) Monotonicity of f)
LN Vl g.g ""'ln g.g} llypothesis < g)
3 £ ‘f . =

If a term - is compatible in addition to being monotonically

structured, then - is a monotonic functional over mf ‘DY)
AL

P

Proof: 1if is compatible, and { . pfn D), than 7T[£] & pf. (D

n
({2 .%.3). 1f I ¢ mfn btl, then ) £] & mf (D bv the first lLemma
n
above, and - is monotonic over mf Dt by the second Lemma above.
n

Notice that there arc terms - which are not monotonicallv structured

but which are such that - is monotonic. One example is the tollowing:

fm = 4% Pix then 7'z, else .
It is not monotonically structured because is not monotonic, but -

is monotonic, because it maps everv f o pt Dt inte the zero functica,

Notice that in thi< case, - F,x, can be replaced bv "F,x, in

such a wav that g = -, with «’ menotonically structured, the most
simple -’  being . I'or another one, see Chapter 1, Section 1.7,
Ezample
we don't know whether this is possible in general.
Notice also, that the last lemma above is talse i¢ the function variable
+

can take non-monotonic values in pfn D For example, if we take

[ SR and it we consider 1 ¢ pfibht {,w .

\ctherwise -4

and h g pit L
otherwise 1 G



~

we have f < h, but vot 1[f] < 7/h], since T[£](C) = 0 and T[h](0) = 1.

So, even though 1 is monotonically structured, + is not monotonic over

1

L.2.7 Monotonicity of /1] and & —

We will brietlyv mention here the monotonicity properties for
4 f) and 1.

First, noticce that every f ¢ pfn D) is trivially monotonic,
as observed in 7., . HSove.

Similarly, for every t ¢ pf D), :'ij is monotonic.
Trivial, by the same observation.

The analogous of the second lemma of 7 I, .~ .. is:

Lemma. Let © be a monotonically structured, correct term.
Then & is a monotonic tunctijonal.

Proot: £ 1s a monotonic functional iff:

for every f, h ¢ pfn D

f<h == (y& ;p") 'l‘fs?/ % tilti8)) .
Let f.h e ptn D, such that { « h, and £ eD . We have:
HEE) = Bete) Paragraph .3.0.1).

+ i ; : :
Now f+ and h are trivially monotonic, and since f « h we

have % « nt, Furthermore, i »‘D+ n‘ and we can apply the second lemma
of previous section to pet

3'f+,€ . ;-h+,§,.
Hence, using transitivity and Paragraph - .%.5.1 once more:

1 f,; o h,F (o]

If, in addition to being monotonically structured,

the term - is compatible, then + is a monotonic functional ovar pfn(D).

Z'For o correct, (f) and « have been defined in 82.7%.%(a).

7



4.5:.4% Continuity of 4 fl and

ol

Since ! is a partial runction, monotonicity is equivalent
to continuity, and the tirst Lemma ot L .7, tells us that, for cvery

. .
fgpfn“ 3

f monotonic i cont inuous .
The continuit: property ol . which corresponds to the
second lLemma o! .. . ind is actually stricrly stronger),is:
Lemma: et be a4 monotonically structured correct term.
B , ) , : forii T
Then 7t is a continuous functional ot mfn pt into mt nt )
Proot: Wwe alrcady know trom ©.. 7, that ¢ is a monotonic
; ; % : oxiin
functinal ot mfn ) into mf ' D ' B .
> - 3 , oty =
Let K be a chain of mf D . Then we know that a1 i a
n
. LA — : :
chain of mf D»t « L), and theretore that lub /FE  ¢xists and belongs
.y

to the same set .-
To prove continuity, there remains to shew that:
¢ [1ublK)] = lub/ix [K
We will do this by structural induction on
Case ‘i : i EAERT

i 3 n
Then, for every f:p! D* , for every f¢ 0* ", we have:

n
% [1€] % i, T ii'
ln parcicular, & Jlub K} &) « 1.
On the cther hand, we also have ’i," t St
so, by detinition of lub : lub K €\ fi.
Hence: lub K = luh |50 18

Gage (il): wwege ;C.

. o el
Then, :or every tept | Irt), for every Ee(D ;

FHE an

*/ Actually, one could prove continuity without using the fact that § is
monotonic over mfn D ), and then indeed deduce directly morotonicity of 7,
since continuity - monotonicity.
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So | lub(K)](E)

G the other hand,

C.

we also have, Vi, ¢, so

[£,1(E) =

Mence: & [lub(K)] = lub(& [K]
Case  iii t = w Analogous to case (ii).
CAS(‘ 1V 4 —ﬁ lltl ) !'lp: P
LL‘L ;s; I)+.n.
We have: « [lub/R)](E g zlflub K)J(E),...,a [1ub(K)] (E))
g lub:jl[yj)(g},...,lub\: (K] (E)),
by induction hypothesis ,
= glaj,a ,...,a o
. P
where we designate lub'ij'K])'Ej by aj, for every
o N =P
For every fieK, 1 :Ii: 4 g')l[fi"gk’ ,xp[fl](g))
1 ai ai\
)7 l’ k] p \
a,,
i
where we have designated ijffifff) by az,
y o i i
for every j, 1 <j < p, and ¢ al,...,ap, by a, .
Now, we know that < [K] 1is a chain, and so, because

of that, there is an i, suay 1 , such that:

Vizi,oa coa .lub’5 'K])(E). [(Property P, Paragraph
.2 )

Also, for every j, 1 < j < p, Jj[Kf is a chain, and so

T & -
there is an 1, say i,, su:h that i > i,, a, a2 lubda, K (&) = a.,
J J ] ] j J( ])\g) ]

Property P, Paragraph L. .. .

Now, for any i > max io,il,...,ip), we have:




lubla [K]) (€ a, (since i 21 )
' ai aj' Definition ot a,
13 l,...,p n di'
Cabc oo ndl ) ~iSinas i =il o
e P Seay

every j, L5 i Sp

Hence lub ¢ [K]) = cx [ lub(K]
Case v): % o Bltte s s i,
—— et 1 n’
- n
Let 7. p")".

~

We have:  [lub(K)](® lub (K) (Zl{lub'K);(E),...,Enflub(K)](g))

-~

= s =) = =
Lub K) (Lub(a [K]) (E), ... lub :n[K])(g)),
by induction hypothesis.

luh'K)(al,af,...,an),
a,

where we again designate tub i, [K])(E) by aj, for every j, 1 < j < n.

J
Now for every f €K , we have:
i
@)@ = £ lalti(€),....af1(T)
. i
fl ‘11.. ,a_)
£ 4, .,
1

where we again designate 1j:ri 'E) by a}, for every j, 1 < j < n, and

S0l T o

LEERERL L Now, we know that ¢ (K] 1is a chain, and so, because

fc
of that, there is an i, say 1i_, such that:

Yi2i,a =za = lub(a {K])fg). 'Property P, Paragraph L.2.4]).
Also, for every j, 1l - i n, Zj[K] is a chain, and there is an 1,
say ij such that:

vi<i,oa-a j = 1ub/3j[K])(E) = a
(Property P, Paragraph . ..

Finally, since & 1is a chain, there must be an i, say iM’ such that:

h



- N o ’
f.(a),a so-esd ) 5 lub K) a.a ...,

¢

¥iz 1y

wiiere a_,a pee ey have been defined above. fProperLy P

Now, for any i >max {i ,i.,1 ,...,1 ,1 ), we have:
= 0’1 n’y

n

lub e K} (F a, Since i > 1 )
i %
f, (a, ,a>) (Def. of a,)
ey n’ i’
t;a;,...,a ) (Since i = ij tor every i, 1 < j < n)

lub K’ ay,+..,a , (Since i > IM)

% [1lub K)](E) (First derivation of Case (v)).

(v

[K])= & [1ub(K)] .

0

This completes the proof that lub

“.%.5 Continuity of 7 [:] and @

~

a [} is trivially continuous, since it is a monotonic partial
function.
At the functional level, we have:
Lemma: Let  be a monotonically structured, correct term. Then
a 1s a continuous functional.
Proof: Let K be a chain in pfnfD‘, and denote Kt = % [ f ¢ K}.
Then K% 1is a chain in mfn vt , and so, by & 20y, we have:

3 [1ub/kt)] = 1ub 7 (kN

@ ~

i.e. B SN - R TN o lub(a [k*])(E).

lub K‘+, and that & 'K+] = [K] on Dn;

Now, we observe that lub(kt

therefore we have:

YT e D', 7 [(lub K)V)(F) = 1ub(a [K])(E),
i.e. v E p", a [ lub K](E lub{2 [K])(E),
ol  {lub K] = lub/ [K]),

which expresses the continuity of .
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4.4 Existence and Characterization of the Least Fixpoints of Monotonically

Structured Recursive Definitions

L1 Least Fixpoints of Monotonic or Continuous Functiondls

Let M be a set, and m a mapping of M into M. * fixpoint
of m 1is an element s of M such that s = m(s).
Let M, = be a partially ordered set, and m a mapping of

M into M. A least fixpoint of m is a tixpoint s of m such that,

for every fixpoint t of m, s = t.
The following general theorems are proved in Appendix 1:

Theorem: 1If M 1is a partially ordered set which is chain closed and
has a least element, every monotonic mapping m of M into itself has a
least fixpoint in M.

Theorem: If M is a partially ordered set which is chain closed and
has a least element .;, and if m 1is a continuous mapping m of M into
itself, then the least fixpoint of m is: lub{mi(a)l i=20}.

(The notation mi a), where a ¢ M, is def'ned inductively by:

m’(a) = a; Wi =0 ,m1+1(a) = m(mi(a))).

These theorems will enable us to show the existence and give a

characterization of the least fixpoints ot monotonically structured

recursive definitions.

L .W.7 Least Strong Fixpoint

Theorem 3: Every monotonically structvred recursive defirition

@ o 1 D

F(x) <= +(F,x) has a monotonic least strong fispoint ,
%

addition:
N S
f lub [Ti(L) | i 2 0}

Proof: By definition, a strong fixpoint of the recursive definition

is a fixpoint of T. Since ~ is monotonically structured and

76



g

compatible, we know that & monotonic over mfn(D+) by &i.5.2, and
even continuous over mfn'D+), by §h.35.h.

Now the undc¢tined function & of pfn(D+) is monotonic, and
therefore mfn’D+) has a least c¢lement. We also know, hy %i. .., that

mfn(D+) is chain closed, and thercfore we can apply both theorems of the

~

]

previous paragrapn with M = mfn(D*) and m = This immediately yields

Theorem
b.i.5  Least Weak Fixpoint.
Theorem . . Every monotonically structured recursive definition
F(x) <= +(F,x) has a monotonic least weak fixpoint, ?¢ . In addition:

?i = 1ub{7i(u) | 1 2 ¢} .

Proof: Entirely analogous to that cf Theorem *. By definition, a weak
fixpoint of the recursive definition is a fixpoint of T. Since
7 1s monotonically structured and compatible, we know that ; is
monotonic over pfnfD) by ¢4.%.- and even continuous over pfn(D) by
3.
Now pfn(D) has a least element, the totally undefined function ¢,
and is chain closed (%.. .i), and therefore we can apply both Theorems of
Paragraph U .4 .1 with M = pfnfD) and m = 7. This immediately yields
Theorem h .

It will be shown later (Comment ©, at the end of Paragraph 5h.:3) that
Q extends QT in the sense that ?: < ?T (where f¥ denotes the natural

~
1

extension of f, as defined in Paragraph .-." ).
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5.1 Introduction

In this chapter, we essentially provide computation rules which guarantee
that the corresponding camputed function of . monotonically structured re-
cursive definition is one of the fixpoints of which we have proven the
existence in the previous Chapter.

We first define standard simplifications and full substitutions, and
give the 'full computation rule', which leads to the least strong fixpoint.

Then we describe the 'standard innermost computation rule', which leads to the
least weak fixpoint.

We finally give a large class of computation rules, which we call 'safe

innermost computation rules, and which also lead to the least weak fixpoint.

5.2 Standard Simplifications

5.2.1 Standard Simplification Schemas and Rules

Definition: A standard simplification schema is any expression of the

form:

where:

(i) each Ai is an individual constant or a term variable (a temm

variable is a letter which stands for an arbitrary term);
'ii  no two term variables arc identical;
iii a is an individual constant in C;

iv the equation g =1,F,,...,=r a holds for all values of
- [ 5
/51,5?,...,§n\ in Dom'g such that, if Ai +3 an individual

constant a,, then Ei is its value ai.

~

Intuitively, this says that a standard simplification schema for

some given function g corresponds to the property that specifying some



of the arguments of g to be constant causes g to be a constant no
matter what is the value of the other arguments.

A standard simplification rule is any instance of a standard

simplification schema where all the term variables have been replaced
by arbitrary terms in such a way that the resulting left hand side term
is correct.

For example:

‘'a) if T then a else A » a is a standard simplification schema for

the sequential 'if -- then -- else', corresponding to the equation:
¥y x € ¥y if T then a else x = a.

if T then a else F x - a is a standard simplification rule for

P~ P NS O NSO

the sequential 'if -- then -- else' connective which is an instance

of the above schema.

(¢) 1f T then A else B + A is not a standard simplification schema for

T S e o o~

the sequential 'if -- then -- else' connective because A is not 2

constant.

d if A then B else B + B is not a standard simplification schema for

o~ N~ [V VoV

the parallel 'if -- then -- elgse' connective, because the term
variable B appears twice in the left hand side expression.

(e) for any given function g, if (al,ae,...,ap) € Dom(g) and
g'al,a?,...,ap: a, with a £y, then

&(a1’§2""'2p s+ a 1is a standard simplification schema (or rule).

f' Notice that expressions of the form 3

glA

BlAA

,..e,A_) » 4 are not standard simplification schemas, be-
? n A S—

cause, in the definition of such, the righthand side must belong

0

P ——



to C, hence cannot be w.

(g) 1f '+' is the ordinary binary multiplication over the integers

extended by 0 * o = o |Natural extensinn|, then O * A » 0 1is
w T W e

not a standard simplification schema 'because the cquation

0+ € does not hold tor # g, although /C,y) € hom/*) ).

However, it '*' is the ordinary multiplication over the integers
now extended by * p® O which is a monotonic extension', then

O* A~ is a standard simplification schema.

At this point, let us emphasize that there are a number of simpli-
fication schemas that one might want to consider other than the standard
ones, but the fact is that the standard ones are sufficient to obtain
fizpoint computations, as will be seen later.

Standard simplification rules have the obvious following properties:

1" Let & » - be a standard simplirication rule. Then:

+ = i = .
viepfn), vEe(D nomifE) EVIEE .

=1 Y

i ‘
Proof: Let f ¢ Pf D I, Fe (D " Then we have:

a = g 8s8,,.00B,)s v =3 forsome g CGy and

r~

come a ¢ C. 1f we denote ¥ /f,€1 by b, for 1 1 =P,
: By 1% b &L 5

we know that /bi,b?,...,bp) ¢ Dom g , because £ is a

correct term. And, because of the definition of a standard

cimplification rule, we have:

g‘bl,b?,...,bn = a ,
which implies: s
plies: sipw) = %if,¥) - =
() Also: v {e pf (D), ¥¥e p®, BE,E) = VL,7).

Proof: trivial by the above property and Lemna 25 FSnls .
]




Lt A — A e

2.0 Standa:u Simplification Relation

Detinition: Le siandard simplification relation is a relation between
terms. It consists of the set of pairs o) tewms 1y £Y such that:
a & 3
b - . wltere s £ is a standard simplification rule.
'Y . GG 5
his telation will be denoted oy
S p 1 - 4 n
Remarks : | 1 » c, t!u'l" i - }" ) s Viog-& J
£%) =308

fhis is trivial 1rom the observation at the end of the previous
paragraph and Lemma .7.1 of Chapter 7.
~ h .
2, If ., 9 = and y 1s correct, B is correct.
Trivial trom previous remark
5 [t %&, then ¢l © ]a|, where, for any tem
, . P
-, =] denotes the size of -« (number of symbols in ~).
Proof: the proot is immediate. It comes from the fact that, in

a standard simplification rule g -1,...,-p = a, the length of the right

hand side is strictlv smaller than the length of the left hand side, and
from the fart that we have excluded « - , when 3 S. A rigorous

induction argument can casily be built using these two observations. =

3.8 . , $ ;

We denote by - the transitive reflexive closure of ., That is:
S.\" 5 . 2 A

o/* e if and orly if = & or there is a positive

integer N and a sequence rf,ilC _ 1 N} such that:

(a) « = iz

7

*/The size |~| of a term 7 can be detfined inductively in the obvicous wav:
lx = | for every 1, I £ i = ni lcl = 1 for every c ¢ U, lw| L
3

I,\g,%?l""“rp/l y |T1I+"°+I’Tpl+]; !lk "ls" o'*‘)Tn,l = |'1‘+--o+l’n|+l.

ir
}”



# . S
f Y@ ' < < N 1~ 4 S &
b tor every i, &, 5y i+l 9
] cyN =al
5.2.3 Standard Simplifications
Let ~ be a term free of ». A standard simplification of  is
a sequence of termms o 3 713 ng....
such that:
a o' oo "
i 3\ . . . S
b o i and ¢ 1is in the sequence, then: TR -TE

i

(© it ? has no successor in the sequence, then there is no g
s
such mat‘haﬁo

Notice that, because of the remark 2 above, a standard simplification

is necessarily a finite sequence. If o is the last term of the sequence,

the simplification is said to be of length n. A comparison with the
definition of computations in 2.4.2 shows that a standard simplification

of  is in fact a finite initial subsequence of a computation of g.

We are now going to prove an interesting property of the relation 3
going g y

. s S -
Lemma: For every term o, if ~ 7 and oy - 75 then there is a
b 65 » s 13
term + such chat (4 v and o, (=) v.
€

Proof: By structural induction on :

Cases (i), (ii), (4ii): if 1=X;, Or g =c€C,or o=y,

then the result is vacuously true, since there can be no g such that
s r
v+ 8 by remark ? above.

(

Case iv: o = g Tl,—,,...,wp‘: this case ¢an be subdivided into 4
. ~ [

subcases:

iv-1l: 0’1 =é(Tlt"”"i_I,TiI:Ti+1|""Tp)’

‘7
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e ———
-

/

and: v, =g ’1"""i-l’T]’Tj+1"""p 5
8
where =, + ~! . d
i i, and i # | suppose i i, for example .
4 K & .} 5 T - - n-l - - 0 - . T )
Then we can targ 8 PP T T e j_l,*i, §41° 7p

" s
since we can apply -, -+ ~. in 7 to pet ap = Vo and

3 : ; s
similarly ~. + - i i WHLL BHVEe g, ® w.
1Y € [
iv-oe gl -/ - where . 3 %/
¢ lL }.-.-. i.,-.., p i i
and : = 74 s su B ogl?
. Y 3 o IR Goonal 3 . T
: 3 e ’ l.’ ’ p i i

In this case, by the induction hypothesis on T we know that there

Gy 5.
is a term such that ¢{ *) vy and ,1’ L AL

By 8 ¥
Therefore 7942 v and v, % v, where:
[4
"I‘.g‘.l""’fi""’p .
% . s,
fusB: oz = gl7 sisey Tl yecesm |y where T, 2 1.
1 1 i p i i

and there is a standard simplification rule :

-y=g-v-l,...,~'p -8 r,t,‘_ =r8 ,Wilh a & C.

-

Let g Al,...,Ai,...Ap +a be a standard simplification schema of

~

which g wl,...,~i,...,fn’ s a is an instance. 'Notice that Ai is not

a constant, since o is an instance of Ai and we have assumed the

. S o
existance of -/ such that -, » -/ . Then g/~ O o7 4000 Ol
i i i =L i p =

is another instance of the same schema, where Ai is replaced by the term

r{ and all other Aj‘ j # i, are replaced by ¥y Therefore

g'fl,...,¢{,...,¢p' +a isa standard simplification rule, and

~

oy §a-= s e Therefore v = o, will be suitable.




}v4+: There are two standard simplification rules

'gs‘:’\’la"-n"’p\ "')/1 =§, ’
and: E‘Tl,--.,"p.-.rr?:}l .

+ 3 I3
Then, let f ¢ pfn D ' be an arbitrary partial function.
+ H —_— - —
For any % ¢ D ~5 t,€ ¥ alle B 7 a
B (5E)wb, by

the observation at the end of sl

= ., will be suitable .

Hence a = b and

At
4

)

i

Coment: This is a Church-Kosser property for the standard simpli-

fications. See Rosen (171,

From this Lemma, we easily deduce an essential property of the

standard simplifications:

Lemma: All standard simplifications of a term , terminate with

the same term.

Proof: By induction on the size of the term .
i) |«| = 1. Trivially true, since » has no standard
simplification,
ii Assume true for all terms of size less than ,, and

assume that there are two

s s
-+ -

standard rimplifications of :

S S
R Gig - @, , and:
5 ¢ 5
r_y—’yl—brye -0...-0f]n,.

|71|h|q‘, and by induction hypothesis, all standard simplifications
of 2 terminate with the same term, which must be oy - Similarly, all

standard simplifications of 7i terminate with the same term, which must

be gé,.



Now, by the previous Lemma, we know that there is a term -+

S .
3 and

!
such that " y 21

3) v. But lyl"y!, and therefore all

the standard simplitications of -, must terminate with the same term

yp. Now - appears in a standard simplification of vy which implies

= o, Similarly L from which we conclude: e d
f)n '/p < y ']', 7 p, (Yn On ’

For every term free >f ¥, we will denote by Simp , the
common fina: term of all standard simplifications of .

We will need one more property of standard <implifications, namely:

Lemma: Let , be a monotonically structured term, free of X, such

that %/, a~ for some a ¢ C not g). Then Simp ' = a.
~

Proof: Bv structural induction on g ,

Case i G = * excluded

Case 1ii 7 a+s C. Then Simp/~ =a

Case iii =y ¢ excluded.,

Case iv, 8 'l’wd’.."'p

[ ’ B"Il ’ ‘...;’TP s a -

Let us denote FllteF by a, for every i, 1 < i < p.

We have )0 0 Qo ont] a.
4 o 4p

Now it is casv to see that, because of the morotonicity of g,

there is a standard simplification schema:

,gl A

1,...,'\p ) i )

where, for every i, 1 i =~ p, if ay / w then Ai = a.

*/The notation ~'f, , when 4 is free of X , has been defined in & .2,

-~



2.3

[Let <b1’b2""’bp> be an arbitrary element of Dom(g) such that bi = a

for every position i, 1 = i = p, such that a, £ w. To satisfy the

definition of a standard simplification schema, we just have to show

gBi ot s Bl ] a. But this is the case, because g is monotonic

that g b1 o ?

and /al,ag,...,ap‘ « /bl,bz,...,up)].
Now, by structural induction, for every position i, 1 <1 < p, such

that  a, f p, we have Simp’,i\ = ag. Let us denote by B,, for every i,

1< i = 8 the term defined as follows:

if a g £, a,
lf L i ik

otherwise, By

Then we have the following:

J y r&AE , 8
G-gflll"'s’)n. - §‘91s---sep "is

and since a 1s the final term of this standard simplification of g,

~

we have Simp(.) a , which proves the property for this case.

Case (y. o =F (s conp )l
this case is excluded, because 5((, ) = w.

*

Full Computations

5.3.1 Full substitutions

Let o be a term over some alphabet, and let F(x) <= +(F,Xx) be a
recursive definition. Then the result of substituting F by its definition

for all occurrences of F in y, which we call full substitution, is a

—

This section owes much to discussions of the .uthor with J. Vuillemin.



term, denoted Fsubst : , and which can be defined inductively in the

obvious way:

SRR o 8 1 = %, , ¢, OF w : Psubst (U ¥ 3
1 i -~ 9
) , r.
iv, CE B "lp"
“subst ¢ = g(Fsubst (. ),..., lFsub Yt ) ¢
Fsubst SVRIUOEE (LT subst p"’
‘v 4 I‘\xl, .,Ln,:
»
p ot () i’ N 3 - N =
b ; odop 1PEk oy
}substT ) T (F,(Fsubst 40 ; FSJbth( n) s

If r is free of x, it is clear that one may go from « to

Fsubst (a) by applying intermediate stcps b of the definition of

Computations in _.4.2. This means that Fsubst (a) is allowed to be the

term following & in a computation.
Full substitutions have the following interesting property:
Lemma: Let ¢ be a correct term over some alphabet and let

F'X) <= 7/F,x) be a recursive definition. Then:

o
v el O .

Fsubst (7, =

Proof: By definition of the functionals, the above statement is

equivalent to:
,"-"\___’

w dbn i A T o R
fe pf ‘DY, Fsubst ‘o) [f] =(a.7) [f]
n T ! K
= af~' f]] Definition of functional composition .
e e
A 3 = el ey Ag. ~ e
i.e. Ve pfnfo , VT_Q.D+, , FsubstT(u,rl & 4T[fﬂ(§)
P, gl )
. - n ',/-§~—-/—’ X ...‘ -~ =,
i.e. Yfg an/D+., ¥Ea(DF)", Esubst {(&}{f,%) 4-1(?[f],§) »

We prove the latter statement by structural induction on Q.
case (1) »=1x,, 1 <1 <n.
Then: FsubstT o) (1,8) = F(£,8) = £, o

and : %’””ﬂ f1,.E) B

:/The notation T(F,/Bl,...,en)) has been defined formally in § 2.4.1.
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case (i1) ¢ =c € C

Then: Fsubst o) (f,¥) - F(£,€) = ¢
T

case (iii) o = ¢ Analogous to above. e

~

\

Case (iv o = §:a].q2,-.-,mp

o —— —————

FsubstT"q‘ /f,E\ % g FsubstT’al) (5% ¢ gtins FsubstT'gp‘

= g/;;il ;;;'T f] ’!\ TN ’gp":ﬁ f] ’E‘\'
——— .
gi:rl,ﬂ--g':p {?fli-_fl}

SEEELY) .
Case S'V" 07 }‘“0/1’0'2:'00’0’“\ .

= 55":=:::::::::::::::::::===:=$‘; =

] 1 3 \ i T - < ( > \
FSLbStT’aj (1,B) = T(F,iFsubstT al)’°"’FSUbSt¢(an)') VB g

/% ——
- F(f, Fsubst o) (1,8 ,...,m (f,%))

by Lemma ;.c.2 of Chapter 5,

i

‘?(f,' 'ﬁl(’ﬁ f] .{‘:--:%‘n"‘;’[f] )_g) ) *
On the other hand:
S————ro——

ﬁ(ﬁ f! ;!) l'(.O’li“')d ) (ﬁf] sE)

n

#f (gl(sﬁ B ST (R £],€) , since o is correct.

1
——
Fsubst (o) (f,E) (above derivation).
T
o
559 i



5.%.2 Full computations

Definition. tThe full computation of a term o(F,Xx) for X =T ¢ (D+)n,

using & monotonically structured recursive definition:

)

Fis) o= o(F,%)

is a sequence of terms , , such that:
i

®)
|

F,ey, and jor every k = ¢
- - y -

f = Simp

Lok 44

= Vsubst
-

SIS ‘vk+l C

1t is clear that a full computation is also a 'computation' in the
sense of 7 2.L.2, because, as we already observed, one can fill in inter-

mediate steps between . and Simp qu' which satisfy case ‘bl) of the
definition in 7 . .4+.2, and similarly between Uppet1 and Fsubst‘r y2k+1) to

satisfy case (b .
5.%.% Theorem ©

We will now show that the full computation actually lcads to the least
fixpoint of ¥ for a monotonically structured recursive definition F(X) <=1(F,X).

We will first prove two lemmas.

Lemma: Let fgi! i > )1 be the full computation of o(F,X) for X =€,

x|
t
3
>
=1
s

using a monotonically structured recursive definition F
5 , +
Then, for every k .- 0, for everv f € pfn(D ), we have:
R Sl
ok C*2k+1 ' T .

Proof: By induction on k.

10



(1) k=¢.

3% =% ¥, since %® is the identity functional.
Then ¢ = Simp(go) and therefore %H = 3%, by remark 1 of

§ 5.2.2,

ii) Assume true for k-1, prove it for k.

Ia\

7 P Simpfo%k), and therefore, by Remark 1 of
5_¥
§ 5.0.2, since o (= Yopsp® e have :
Yok T Dk,

(b) Py T FSUbStT(aﬁk-l)’ and therefore, by the Lemma

of Section 9.7, we have:

s
= N

Ty = Fsubst (ap 1) =% )0 %
= A k-1 B~ .
= i Oy * 7» by induction hypothesis.

= ?k, by associativity of functional

0
. C e _k
composition and definition of 't . o

2

We can now prove the following Lemma which is of interest in

its own right:

Lemma: Let o be a monotonically structured, correct term,

F(X) <= «(F,X) a monotonically structured recursive definition,

and ¢ an element of fD+\n. Let ? denote the least fixpoint of
T

¥, and let a dencte an element of A. Then:

(1) The full computation of o for ¥ = ¢ using the recursive

definition terminateswith a if and only if: ‘ﬁ(é ST = A
~ T

(2) The full computation of o, for X = € using che recursive

~ A
definition does not terminate if and only if: alt €) = w.
T
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Proof: Note that (2) directly follows from (1) and from the fact

A

e +
that & 1s correct: W(@ ,€) is in p and if it is not in A it must
ay

must be .

To prove (1), we first note that if the computation terminates with

A
f is a fixpoint

-

a, Lemma . .° immediately tells us that Ef?T,F} a, since

of ¥.

A
So it remains to bhe shown that if'&(?”,c) = a, the full computation

of o for x = T terminates with a.
A ,~
=t

We know that ?' = lub {F ',1‘ i _ )}, because of Theorem 3 (Chapter

by Biulag).

Let {qi| i - .} be the tull computation of 4 for X = c. Since o is

monotonically structured, 5 = 4(F,c' is also monotonically structured, and
o =

(- . A +
therefore & is continuous over mfn D ) by #u4.3.4. But @* € mfn(D ) by

Theorem 7, and therefore we have:

ol lub (%101 4 2 ¢} = lub & . Flal| 1 20,
) il
. . 7 5 X’: i ‘
i.e NO e’TJ lub ’Jo ‘ 1 =9 }
+ n /\ A
r / \ ~ O 5 f r
But: v ¥ D A » 3 % f});)

A
= 5 (f , ), since o, is free of X,

=at#y {Hypothesis),

\

o S
Therefore, by definition of the lub, for every ¥ €(D )", there must

be an 1 _- 0 such that:

»
(S8

F10) (F)




\Nal

But, by the previous Lemma, we know that, for every i >0,

=5 '“1

= = =
Gy Z 0441 T T -

R

+.n : :
Hence, for every ® ¢ (D , there exists an i - O such that:

=1
#

Lx’.’.i L )’L i )
But, by the Lemma of * 9...%, we know that this implies that

Sinp( i> = a,
Vonce 4 oy Simp',_i' = a, which proves that the full computation

¢

of 5, for ¥ = T terminates with a.

= ]
As a dircct consequence of the previous Lemma, we get:
Theorem 4@ For a monotonically structured recursive definition, the

+
partial function over (D )n computed by full computation is the least

strong tixpoint of the recursive definition.
Proof: Let F X, = +(F,X) be a monotonically structured recursive
2 : ! . +.n
definition, let 1( be the partial function over (D')" computed by

full computation, and let f denote the least strong fixpoint of the
recursive definition. By detinition of fC, if the full computation of F(X)

for X = ¢ terminates with a, then fc'E a. But, by the previous
e )

A
Lemma used for , = F X', we also have @ﬂ (E) = a in that case. If the
full computation of F ¥) for ¥ = € does not terminate, fC\E‘ = u by

definition of fc and eT't w by the previous Lemma.

Hence: fc = ?T. o

Standard Innermost Computations

“.L.1 Parallel Innermost Substitutions

Let , be a tcrm ove~ somc alphabet, and let F(x) <= +(F,X) be a

recursive definition. Then the result of substituting F'b) by ~(F,b)

~

= n
where b ¢ ¢ for all occurrences of such terms in o, which we call

parallel innermost subst itution, is a term denoted Psubst (o)
%

!)i
o



which can be defined inductively in the obvious way:

(1) e f1i4) = w., & or g Psubst (n) = 4
T ~ ~ T
+ A\ &
OO (g SVE e B0
LN p
Psubst () = gl{Psubst {g.),..., Psubst (g )).
= 5 - 1 = P

) 2 T i I

] 111 )Jn

1f, for every i, 1 < i < n, oy =a. ., a, € C,

’

then: PsubstT(g) = .(F, - fl""’fnk)’
otherwise, Psubst (,) = F/Psubst (al).....,Psubst (gn)) .
= = i
If o is free of X, it is clear that Psubst(y) can be derived from
o by applying intermediate steps 'b2) of the definition of 'elementary

computations' in 2.4.2. Actually, these steps verify the conditiias of

2.4.5, so Psubst _ ») is allowed to be the temm following o in an innermost

computation.

5. .2 Standard Innermost Computations

Definition: The standard innermost computation of a term al F, X)
- - n q . 8 =0~ q = , - :
for x = ¢ < D, using a recursive definition F(X) <= - F,x),ls a sequence

of terms 7 such that:
f'!o & r_y‘F,C),

and, for every k > :

(%1~ Simp (o)

2 Yodp Psubstng k+1/ » where the notation Simp(,)

A}

has been defined in 5 5.7.% and Psubst (4) in ¢ 5.0.7

It is clear that a standard innermost computation is an inneimost’

computation in the sense of ¢ 2.4.5.



We will now show that the Standard computation rule actually leads to
the least fixpoint of ¥ for a monotonically structurced recursive definition

F(X) = ~(F,X).

z : ] n ; .
Ler us denote by I the partial function over D which is the com-

puted function of the recursive definition F'T) = 4/F,%) by the standard
camputation rule,
We first prove:
Lemma: Let o/ F,%) be a correct, monotonically structured term, and
F{x} < «(F,%) be a monotonieally structured recursive definition . Then,
for every T « p"-
1. if the stundard inncmost computation of 4 for ¥ = € using the
recursive definition Fix) = -(F,%) terminates with a constant

term a C, then:

.. otherwise: Z’IS,E) @ &

Proof: We proceed by st.ouctural induction on o

~

Cases(i)-(iii): o=x, g=acC, ¢= w: trivial.
el
Case iv: (,=gq1‘...,(/..
~

vooume the Lemma true for every < L =5 &5

Ve have:

n

AL LT) g’ai(fs,zj,...,ap £ ,T)) by 2.5.2 a(iy, sincc ¢ is correct.

i

i _p and

.t us designate 33([9,67 by ai,(or every j, 1

% al,...,xn) by b.

Because of the definition of the standard innermost computation .,
Y



i i g
we have ay =g 11,...,yp for same N, 0 < N~ and for every i,

0 1 € N, where, for every i, 1 < j§ =R, (yj 1 T s ﬂ}

consists of the N + 1 first c¢lements of the standard innermost
computation of g for ¥ = T using F(X) -= «(r,x).

Only two cases may occur: N is infinite or § is finite.

Cdse iv-a: N =m

In this case, we must have b = . For assume b # 4. Then
let J be the sct of indices between 1 and p such that the standard

innermost computation of o for ¥ = ¢ using F'X) <= 1(F,X) terminates.

By induction hypothesis, we know that, for every such j € J, the standard

innermost canputation of B terminates with a,.

~]

Now, let k be the smallest integer such that, for every j € J,

a? = aj. (If J is empty, then k = 0; otherwise, k is the first

integer for which all the terminating standard innermost computations

of aj's have actually terminated in k steps’.

We have:

R k
o 2 gfﬁl,...,qp}, where, for every j ¢ J, a? =fEq. =

~]J
Summarizing what we know by induction hypothesis, we have, for

for evéry j, 1 = j <P

if j Gl ) &€ D%
if j € J, then gj fs,t, aj H

if j ¢ J, then E}(fs,c) a8 &,

But, since g is meonotonic and g’a

12 ,....ap) - b fw,

there is a standard simplification schema

g(A] A, ,...Apv = By

where, for cvery j € J, Aj = aj.
Hence we have the simplification rule:

14(

-




k k k
E(al,ae,-..,o'p) - b y

i.e.: O‘!(—‘B_,'

But this means that Simp(ak) =b

~

Now if k is odd, this is a contradiction, because we must have
O’k = Simp(o’k) ’
If k is even, this means that .47 = b, since g ., = Simp(ok)

in this case. But this contradicts the assumption that the computation
of o does not terminate.

Hence, the assumption b # w was false.

In this case, we must have ‘:(fs,z) = w and the standard

innermost computation of « does not terminate.

Case iv=b: N<e
s 5 d = ince the
We have: G = ,§(al SO A ) an o1 T 8 sin

computation of o terminates with a.

~

So there must be a standard simplification schema:

E.(AI’AQ’..”AP)-.'% ’
f which N 4 a is an instance
of whic Bl ,...,ap) -8 5
This means that:

(a) there must be an equation:

A )

g(El,(gluu,Fp) = a (E)
and a subset J of the indices from 1 to p such

that F holds for every tuple (El,§2,...,§p> € Dom(g)

I



such that j € J » f_ = bj’ where the bj's are

]

individual cor ‘tants in A ‘not ).

N
b For every j € J, aj = b., where bj is the constant

-~

defined in (a).

But (b) implies that, for every j ¢ J, the standard
innermost computation of aj for ¥ = ¢ terminates with_gj.

Hence, by the induction hypothesis, it must be that:

i€ & G (<) &b, .
Now we know that:

’&‘ f‘i’E) = g‘lgllfs’a)"""a‘p(fs’é))

1 . : ]
=g al,...,ap), by definiticn of the a;'s.

Hence, the tuple “apseeed> belongs to Dom(g), because

o 1is assumed correct, and is such that:

jeJ =2a. =b,.
J ]

Thus equation (E) holds for this tuple and we have:

a\fs,c) g al,...,ap, za .

To summarize: in case iv-b: E(fs,é) = a and the standard

innermost computation of g terminates with a .

Cases iv-a and iv-b cover all the possibilities for

case iv, so we have proved the Lemma for o = g(al,...ap).



Ca : = F( - ).
il [0 F al’ael )Qn

In this case:

i

if 3j, 1 <3 <n, such that E&(fs,é)
otherwise ; 1(fs,c) , fs(dl(fs,c),...,Qn(fs,C}).
(By 2.%.2. av), since o is correct) .

Because of the definition of the standard innermost

computation of , we must have:

i i

o, = F-al,...,an\ for some N, O < N € » and every 1,

i
0 <1 <N, where, for cvery j, 1 < j < n, {a; | O< i < N}
is the standard innermost computation of Qj for x = ¢ using

Fix) <= 1(F X).

3

Case v-a: If the standard innermost computation of ¢
for x = ¢ terminates with a, then, for every j, 1 < j < n,
the standard innermost computation of Cﬁ for x = ¢ must
terminate with some fﬁ’ aj Z D and the standard innermost

computation of F(a,,...,a ) must terminate with a.
~1 ~d1 ~

Hence, by induction hypothesis, Vi» ! < j <n, ngfs,E) = a

o - > - e -,
Q(fsnc El fs(al'fsnc))"-ran(fs’c ) .

49

w, then ‘a(fs,z) =y,

, and:



fs .‘il,...,3n> Induct ion hypothesis

a {Definition of f (a

tase v-b: If the standard innermost computation of g

for x = ¢ does not terminate, then two subcases may appear:

v-bl. One of the standard innermost computations

of aj for x = ¢ does not terminate, for some
j, 1 « j « n. Then, by induction hypothesis, for

that j, we have:

N'f‘f c\ 3

JJ s’/ €&
Hence 'Z'fg,g‘ g by 2.5.2°® (v).
v-b". For every j, j < n, the standard

innermost computation of aj for x = ¢ terminates

with a. ¢ C, and the standard innermost

-

computation of F al""’fn: Joes not terminate.

Becausc of the induction hypothesis, we have:

Y’ L 25 % & a.(f ,c) i
f ! il fgoc aj . ! .But since 4 = F(al,...,an)

is correct, we must 1 S c) o c) > i
. have <y fs,c,,...,an fs,c\ SCH ot

aj € Dy and:

il

Hence, Vj 1< j <n, 33 = )
S

f (o (f ,c),..., & (8 ;¢)

~ -
a(fs,c)
s

i

fs(al,...,an\ Induction hypothesis

T Definition of fs(al,...,an).

10OC



So in both subcases of case (v) where the standard innermost
computation of . for X = T does not terminate, we have
((f e W,

This completes the proof for case (v) and for the Lemma.

From this, we can now deduce:
Theorem t : For a monotonically structured recursive definition.
: . . n .
the partial function over D computed by the standard innermost

computation is the least weak {ixpoint of the recursive definition.

by a monotonically structured

Proof: Let F x; <= =(F,x;
recursive definition, and let f be the partial function computed by

]
the standard inncrmost computation rule using this rccursive definition.

Let T ¢ D",

The standard computation of F{x) for X = ¢ starts as follows:
p K )

i = Fic

()
4y = Simp JJ' = Flc

= P 5 i ‘=‘V'“_-
! IsubsL7 4y, Foe)

But the tirst term of the standard innermost computation of
T(F,x) for % = ¢ is PUELE)

Hence those computations either both terminate with the game
term, say a, or both do not terminate.

The previous lemma applies, because F/X)  and T(I',X) are

both correct and monotonically structured, and thus we have:

101



If both computaticns terminate with a:

F(i){fsE) = fs(E) = a,
T =4 ~ =3
T(F,x)(f ,C T(f.,c) = a;

s ’

b
If both computations do not terminate:
f (€) 2

s’ ’

?(fS,E‘, ST

il

In any event, fs(g) '?(fs,z).
Since ¢ was arbitrary in D", this shows that £, is a

fixpoint of 1.

Now, by Theorem 7, since fs is a computed function ohtained by

innermost computation, we know that fs must be the least fixpoint of 7. —

Comments: 1. Notice that w2 have not used Theorem 4 in the
proof of Theorem .. In fact the proof of Theorem & is an alternace
way of proving the existence of a least fixpoint of ¥. So far, the
author has not bcen able to relate the proof of Theorem 6 with the
fact that ?T = lub f?i{Q} | i >¢}, which is known by Theorem k.
. Theorem 6 tells us that ?} is a computed
A

function. Thercfore, by Theorem 1, we know that ?; must be an extension of fT,

or rather:

o<t

T T

(Since, @T € pfn(D) and ?T € pfn(D+)). This fact was not apparent

from the set-theoretic characterizations of Q and é provided in
T T

Thecrems 3 and 4.
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5.5 Safe Inneimost Computations

This section describes a large class of innermost computation rules
which also lead to the !east weak fixpoint of the recursive definition,

and whiclh we call safe innermost. Both the standard simplification rules

and the standard substitution rules are extended to provide more convenient
and/or efficient rules to compute the least weak fixpoint . The standard
innermost computation described in Section Y.’ appears as a special case
of safe innermost computations. The safe innermost computation embody all
previous methods known to us to lead to the least weak fixpoint.

We first describe the safe innermost computation rules, then prove
Theorem 7 which says that they lead to the least yweak fixpoint,

5.5.1 Safe Simplitications

A safe simplification schema is any expression of the form:

g.‘Al,A‘ ,...,Ap) - B,

(1) each Ai is cither an individual constant, or @, or a term
variable;

(i) B 1is either an individual constant, or or a teym variable

lE

which is identical to Aj for some j, 1 < j <p;

(1ii) the equation g(El,gc,...,E ) = T holds for all values of

L. F > .
51,52,....:p,? .» such that:

(iii-1) <« gl,gg,...,sp > ¢ Dom(g);

i1ii-’) For every i, 1 i < p, if A, is a constant
/ y L & i
a, then gi a,, 1f Ai is g then gi = ws

(iii-3) For every i,j, 1 <i, j<p, if A, and Aj are

the same¢ term variable, then Ei = gj o
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(iii-%) If B is an individual constant b , then 7 = by d.£

Bis g then N = w, if B is the term variable Aj’

1< j<p, then 7 = gj.

Comment: 1t is obvious from the definition that a standard simplification
schema is a safe simplification schuma. Notice that we don't cxclude twe
term variables to be identical. Intuitively this means that one may decide
to simplify on the basi. t!:t two terms are formally identical, if the
corresponding equation holds.

A safe sirplification rule is any correct instance of a safe simpli fi~

cation schema wherc all the term variables Ai's have been replaced by
arbitrary terms 'i's in such a way that ¥i, j, 1 <i, j <p, if

Ai = Aj then g *j) and where B, if it is the term variable Aj’ has
beer rep’aced by T

Examples:

(a) All st:ndard simplification rules are also safe simplification
rules.

(b) it T then Aelse B - A, for the sequential 'if-then-else'
connective, is a safe simplification schema which is not a
standard one (cf example (c) in £ 5.0.1)

(e) if A then B else B 5B, for the parallel 'if-then-clse’
connective, is a safe simplification schema which is not a
standard one (cf example (d) in & 5.0.1 ). It corresponds
to the equation:

+

v §1 G{T,F}+, ¥k 2 D O & then £, else ¢ = €_,

1

valid for the parallel 'if-then-else' connective.

10



(d) 1f '#' is the ordinary binary multiplication over the

integers extended by 0% o - ., we have seen in Example

ta) ef & §.2.1 that “ A, 0 was not a standard

simplitication schema, because the corresponding equation

! For the same

did not hold on the whole Domain of '*
reason, it camot be a sale simplification schema either.

A sate set ot simplitication rules is any set of simplification

rules which contains the set of standard simplification rules.

o Sate Innermost Substitutions

The safe innermost substitutions are innermost substitutions
per formed on certain key positians, which we are now going to define:
Definition: Let g 4 ,...,LP) be a correct term. Let J be the
set ot indices corresponding to constant terms, i.e.
J={j}1_j<p and Oj T Gl -
An yg-set 1 ot the given function g in that term
is a set of indices such that the equation:
8(51,5,---§P) w
holds for every tuple - 51’52""’§p > ¢ Dom g) such that
(1) Vie J, €; =&,
) 1rnJ=p and Y 1igl, £, = w
In otler words, an gy-set is a subset of ithe indices such that, if all
the corresponding arguments are undcfined, then the whole term becomes
undefined, for all values of the other arguments respecting the constant
terms.

Notice that the union of two W-sets of g 1in a term is also an

W-set of g in the term.
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We now proceed to define inductivelv scts of key occurrences of F in
which to perform safe innermost substitutions in a correct term

(1) = (t1i' 2= x_, ¢ or g : no substitution to perform.

(iv) R AR ) : select an y-set 1 of g in 02,

P
as discussed above. To obtain a sct ot kuy occurrences of F in  u, pick
a set of key occurrences nt ! in each of the 1i's for every i . 1, and
form the union ¢t them.

(v) Fw WG ... .00 )8

T sl i for | _ i < n are individual constants in C
then this occurrence of F is a key occurrence.

-otherwise, to obtain a set of key occurrences of F in
a, pick a set of key occurrences of F  in each of the ai's, for 1 <1i <n,
and form the union of them.

Comment .

1) Notice thit this is not a deterministic process. In general, there
will be manv scts of key occurrences of F in a given term, according to
which ,-set o! the g's we pick during the process.

Notice that in Case v we do not select an occurrence of F
corresponding to a term F/ll,....Ln) in which some of the li's ar¢ not
individual constants /even though the xi's might not contain F). Also,
an Ji being 4 prevents the F of Ff:l,...,an) from heing a key
vecurrence. This is of minor importance, however, since the definition of
an innermost computatjon would not permit substitution in such a position,

even if we had included it in the set of key positions.

Example: Take (= if P’F,x ) then A[F,x) else B(F,x).

fa) Suppose that 'if-then-else' is the sequential connective.
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Then it has tive w-sets in

(. T42L 119,

So any set ol kev-occurrences of

(2

ol key-occurrences o Foin g

set of kev-occurrences ot F

occurrences ot F in B F,~

Suppose now that 'it-then-else'

It only has four L-sets now in
& =

. ’
Suppose thdat we have picked ¢

computation, the term

e ]

—~

= b,x, then a else
PG

-

Now, 'it-then-clse’ only

in

has one

R will be a set

similarly, the union of any

A b ,x with any set o! key-

will be a set of kev-oceurrences

is the parallel connective.

!, namely:

<} aud that after some

has become :

B (F,x

v-set  in B, namely {1,7].

This means intuitively that computing in position 1 alone or

in position

4

3 Safc Innermost Computations

Pef{inition: A safe innermost

= n . ,
flor X =¢ g D using the recursive

sequence of tcerms

g, | }

fon eve:y it 20

.5 ohtained from

k+!

such

alone would be unsafe).

computation of a correct term

defindeion F(xX) <= (F.3) is
that:
J’k by sclecting a

safe set ot simplifications and applying

Lot



them, in any order, until no more can be applied.
b, L i: obtained from 0 by performing
rt K+
innermost substitations in a set ot! key
occurrences of Fin ¢ -y

Comrnent :

In general. there are many sate innermost computations of a viven term,
since at cach step, we have the choice of which safe set of simplirications
to pick, and which set of key cccurrences of F to pick. These choices may
vary from step to step, ani mav cven he context sensitive, i.¢., one may very
well decide to make the choice i keyv occurrences o. F in a term on the basis
of the environment of that term.

The rest of the Chaptevr is devoted to prove that any computed funct ion
computed by safe iniermost computation is the least wecak fixpoint of
the recursive detinftion.

5.5.4 Theorim

Subcomputation.

Definition: Let {li I i > } be an innermost c... Jtation.

A subcomputatiol of this carnutation is a sequence of consecutive subterms

of « for N. - i - N . <hich form a computation sequence.

N can be finit: or infinite, and accordingly, the sub-
computation will be tinite or intinit subcomputar ion is said to
terminate if it reaches a term which .5 o ndividual constant in C.

A subcomputation can be fin te and not terminate, in the case whecre the
position corresponding to the subcomput at ion disappears.

For example, if:

10%
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g*lliFl) -+ B ’S, r ¥ L,;e,. ’8_. ~» B 1-‘,?. ) 2 000 0
- ‘e
is an innermost computation, then;

(S 287 o (2
A cr

151,5 B8, gl 8),. ...} and {11,1 ,1‘} arc
subcomputations. The sccond one is finite, but may not have terminated

if ¢, is not an individual constant in C.

: n
A well -founded orderving on I}

: . ] — n
We now give a well-tounded, strict portial ordering—on I,
denoted - b

Definition:

T i1 the standard innermost computation of

-
v
—
~—
v

F ; terminates and the standard innermost computation of
F'? is a subcomputation of it which terminates.
Comment :
Let us empliacize that the standard innermost computation of F'E) must
terminate as a subcomputation of F'E,. It would not be sufficient to

occurred within the standard inneimost computation of F(ﬁ),

~

require that F

bl

and that its standard innermost computation terminate. If the latter did not

terminate inside that of F , we could not guarantee antisymmetry of the

=
~)

3
~A binary relation - over a set S is a strict partial ordering if it
is antisymmetric:
(va,b) (a <b and b < a is false),
and transitive:
Ya,b,c; a < b and b<ec¢ => ac<ec).

A strict partial ordering is well-founded if it has no infinite decreasing
chain.
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relation,

Lemma:  The relati etined aboy t weel tounded trict
A _ kel Al

partial orco s 1D

i Acvt Ty vy ;ivial since ? = implies that the standard

fnacrpost computation of F ¥) is strictly shorter than that of

(14) Transitiviey: Trivial.
(111 Wwell-toundedness: Suppose we have an infinite descending chain:

i *1 i = A ; Since each term is finite, there must

be an infinite number of distinct terms in the computation of

=

F 'O; to contain the infinityv ot F/:i . Hence the computation

\

of F'¥ ) does nct terminate, which contradicts the hypothesis

we also have a well-founded ‘rict partial ordering on the set of terms
over an alphabet, namely the subterm relation. Let us also denote it by <.
Therefore, we can form a well founded strict partial ordering on
hn x{Tvrms}, which we will also denote -, as the lexicographical ordering
obtained from the two previous ones, namely:

y<E,a>, 7,8 »eD x [Terms):

o> <7,8 iff <% or (F=T7 and ar- B

-

<

ua}

It is a well known result that such a lexicographical ordering is indeed
a well-founded strict partial orderin; if it is obtained from orderings

which have the samc property.
We will need one more definition:

A subset S ot ‘L+,p is said t» be regular iff for every E & 5%,

11¢C



every T 1in '._A+)p which Is < ¥ 1is also in S. An interpreta .ion of
an alphabet is regular itf all the given functions have regular domains.
Similarly, a recursive detinition is regular itt all the given functions
which appear in it have repular domains.

Any interpretation can be extended into a regular one in a number of
ways, and any monotonic interpretation can also be extended into a monotonic
regular one in a number of ways. Now it is easy to sce that if{f we take a
monotonically structured recursive definition which is not regular and
extend the given functions into monotonic regular ones, the least weak fixpoint
of the recursive detinition is not modified. Because if the recursive
definition is }'X) -= - F,¥ , - F,X, must be correct; theretore, evaluating
- F,x) tor any partial tunction f ¢ pfn D) cannot lecad outside the domain
of the given functions

We now have the necessary tools to prove:

Lemma: Let the interpretation of the alphabet be regular, and let

F x) <= =/F,¥, b¢ a monotonically structured recursive

definition. Then tor every E € Dn and for every correct
monotonically structured term & free of X, if the standard
innermost computation of F’zf terminates and has the standard
innermost computation of <« as & terminating subcomputation,
then any s.ite innermost computation of « terminates.

Proof: We use structural induction on the pair < E, a >, i.e., we
prove that, it the property holds for all pairs less than - €.a>,
then it hoids for - ¥, a >,

We procecd by case analysis on .
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Cases {) - ‘iif : X., ¢ or w. The property is trivial,

i
ecause in Case¢ @ - ii any computation of
terminates at the first step and in Case fiii)
no computation <! : terminates.
Case ‘iv : - RUCE. onelBE b
|t p——n - Ao - J| p'

“t us pick a sate innermost computation ot ¢+ and assume
it dovs not terminatc Two cases can arise.
Case [iv-l : 11 -2 '11,....:;4 for every i >
Let us takc some N sufficiently large so that all
the terminating subcemputations of lj's have terminated
betore N, say; N i . Let 1 be the set of indices

such that the subcamputations of Ij’ j ¢ 1 terminate,

with, say, a . Then, for every j in 1, 1? = aj.
N N,
y » 0 = C. i
We have % =8 zl,...,zp )
Now g has an yw-set in YN' For example, we have:
(. . E 1  where j 1L =»¢& a, »/
e P e o i
j 1 = ": e
it $
For if & fl,...,gp a f w, we would have 2 standard
- : N N,
simplification rule g t‘],...,zp . @
This =« Er"°'5p © belong: to the Domain of g: This comes from the

regularity of Dom/g) and the fact that = is correct, If ?1 denotes

the least fixpoint of ;, we know that lx? sl

e = g‘al,...,a ), where
a, = ui/?T, )i hence -n],...,ap ¢ bom'g, (i correct). Bu

- gl,...,gp ~ o< -nl,...,:p-: hence - 51,...,§p> ¢ bom(g) (Regularity).

1L
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Now the set of safe simplification rules must include that particular
rule. So either of two things can happen:

(1) this particular rule is applied.

, N
(i1) Another rule is applied, say g’}lN,...,IpN, 5 lj\

In both cases, and without 1urther analysis, the hypothesis of Case (iv-1)
is violated.

So, in fact, tor N i , there 1s an w-set of g in N
Let us de wte by J the union of those w-sets of g in uN which

are selected infinitely many times in the safe innermost substitution

process. J is also an w-s¢t of g in 1y and therefore, we have an
equation:

- oy A

(& vt = W 1

¥ >] iEp/ E )
for every tuple - 51""'§p > ¢ Dom(g) such that:

v 1 £ = a

v € 5 3

) ¥ J

¥ e gk B W

Now, since the standard innermost computation of ': terminates, we must
have an equation:

8 sl,...,gp) a for some a # w , (E2)

Dom(g) such that:

/

) ’ < F TS >
tor every tuple < 1 Sp €

¥ g K, gj 3 aj,
where K 1is the set of indices j for which the standard innermost
computation of Jj terminates as a subcomputation ot the standard innermost
computation of «t,

The key point is that K 7 J = . ror suppose there is an index

j ¢ K7 J. Then, since j - K, the standard innermost computation of aj

terminates as a subcomputation of that of ., hence, by transitivity, also
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as a subcomputation ot ¢ ? . Burs s f,wj © E,r >, and thus, by

v

induction, we know that any sate innermost computation of lj must terminate.

i ¢ J, the subcomputation ot ¢, in the safe innermost

But, since ;

computation of : dous not cormivate.  However, ; is worked upon

infinitely many times, honce this subcomputation is also a safe innermost

computation. his is 4 contradiction.

Becaus¢ Kk uand J uarce disjoint, and because of the regularity of

> which will satisfy both

Dom(g:, we can sclect a tiple ¢y,c ,...,cp
(E1) and 'E'), by speciiving:
iy & Jy S w
]

\ otherwise cj .
‘It | and K are oot disjoint, which means that, for some di two computations

01 liave terminatid, we kaow that the final term must be the same in each

& (G s i A€ < < al,...,ap and therefore, <c,,...,cp3 belongs

)L 2 P 1
to Dom’'g , by regularity Sec footnote or previous page'. Hence <c1,c2,...,cp>

satisfies E1 and E', which is a contradiction.

Therefore this case carnot happen.
y = e i A b ;
Case [iv-0) B =‘§’z1 o) for 0 <i<Nand g, is the
final term of a safe simplification of ij for some
j, or w. It cannot be an individual constant, because
the computaticn of <« would then terminate .
So there must be a simplification scheme
I AI.A.?,...,AP) - B

corresponding to an equation
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B(E :8,s-- 008 ) = 1, (E3)

p
where:
Fyre A ¢ Dom(g)
Wiy Al ), A, = a, =>F, a
/ gl 1T SRy YAy Ty R w8
A, =w =>F :
J ~ "J w,
Hasky LS Jalk &Ik wod =X wCy

e

(oS

=
]

A, then 7 £
j >

if B=w then T = w,

lLet us call | the set of positions j such that the subcomputations
of Lj have terminated in the safe innermost computation of . For
i ¢ L., we have € = a .
’ ’ * ] j
As in the previous case equation (E’) must also hold. K denotes,

as in the previous case, the set of positions such that the standard

subcomputations ot lj have terminated ir the standard computation of Q.

Now let us choose - dl""’dp > in the following way:
Vi 1o 15 R d, = a,
J e j j
41 7 ; N 1
Vi bL oK) if a? = for sme kK, then d = a
otherwise, d, = w

We observe that if 1? = uﬁ and k ¢ K, then the standard

innermost computation of Ij must terminate. (The argument is as follows:
since k ¢ K, the standard innermost computation of ak termminates, and,
by induction hypothesis any safe innermost computation of ak terminates.
Hence, that which leads from Qi to nﬁ must also terminate, and so

N

does the one which leads {rom aj to a? = uk. But if a safe innermost

computation of «, terminates, a fortiori the standard innermost one will.)

J



Hence dk = ak, and we observe that:
Qoy.ongd B K < @,,...,a » and theavefore
1 P 1 P
& .o0d e W) Nl 5 atisfi () -
‘dl’ i - Dom(g), and ! ,dp > satisfies (E?)
Now we show that dl""’dp - also satisfies (E?) with T = w.
(@) Flrwes df J el 8 A
J s Jq & j j
(b)) i aN = W LN cannot be equal to N for k ¢ K
[ O‘k ’

by the above argument (th: standard innermost computation of w never
terminates’, &nd a fortiori j cannot be in K.
So d, = w.
3

(c) Suppose H =

\ ) pp _j 'Lk'

(¢1) 1f either j or k 4is in L, then the cther is, and we
Ve aJ = a . So assume now that j g L and k & 163
(c?) 1f j ¢ K and k ¢ K, then both standard innermost

have d, = d
J

computations of aj and o terminate with the same result, and we have
(¢3) If j ¢ K ,L and k ¢ K (or the symmetric case),

both standard innermost computations of aj and ak terminate with the

same result (by the same argument used in the proof that <d1,...,dp>

m

satisfies (E2)), and we have forced dj = a =d  in the definition of the

dj S.

(ch) 1f j §KUL and k & K ) L. Then either there is an

{ in K such that a? = Of (in which case also O? = Oﬁ and dj = dl’

d dk) or there is no such /7, in which case dj = dk = w.

d , so d, -
P / 3

So < dl,dg,...,dpn certainly satisfies (E3). Now to show that

11¢
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the corresponding right hand side in E/ is w, we assume B 1is not W
(in which case it is obviaus); then B = as for some v, 1 - v < p.

First, v does not belong to L |/ K: v is not in L because otherwise

B would be a constant, which is excluded. It is not in K either because,
by induction hypothesis, the safe innermost computation of z would then
terminate: but then so would that cf 75, hence that of HN g 4 hence
that of =, which is a contradiction.
. N N :

Furthermore, there is no k ¢ K such that ak = %v, for otherwise
the standard innermost computation of Jv would terminate, by a previously
seen argument, and again this would imply , as above, that the safe innermost
computation of « terminates, which is a contradiction.

Therefore dv w, which implies T = w.

Thus, we see that:
.,d ) - w from (E?)

P

- a#w from (E2) ,
which is a contradiction.

This proves tl.e property for Case iv.

Case (v): a= F(Ol,...gln)

1f the standard innermost computation of Q terminates with a, then

terminates (with a, ), and that of

for every 1, 1 < i < n, that of {

i

ngl,..

~

.,an) does, with a.

Any safe innermost computation of & is of the form a = F(ai,...,aﬁ),

in which all the computations of @,, for 1 < j £ n, terminate with a_ , by

i’ ~t’
the induction hypothesis.
] . . n
Now < aj,...,a - 1is less than <« gl,...,gn > in our ordering on D,
117



since the standard innermost computation of F al,...,an) occurs as a
terminating subcomputation of the standard inuermost computation of

F(gl,...,in).

Let us abbiceviate, as usual, :31""§3n5 by ’E. Then the pair
<@, F(a)> is strictly less than the pair < ¥, > in our order, since
— = )
‘E <‘E llence by inducti hivpothesis, our property is true for the pair
<'§, F;E\ >, Since the standard innermost computation of F:E) terminates
and obviously has P'E itse!tf as a terminating subcomputation, we know

that any safe innermost computation of F’3) will terminate.
But any safe innermost computation of @ hits upon a safe innermost
computation of F a), hence also terminates.

—~

This disposes of Case v and complctes the proof. =

From the Lemma, we can conclude:

Theorem |: For a monotonically structured recursive definition, the
partial function over Dn computed using safe innermost computation for any
regular monotonic extension of the recursive definition is the least
weak fixpoint of the recursive definition.

Proof: As observed above, if the recursive definition is not regular,
one can extend it into a monotonic regular one without modifying the least weak
fixpoint.

Let f be any computed function of the recursive definition using

safe
safe innermost computations, and fs be the function computed with the
standard innermost rule.

Applying the above Lemma with « = FQE) immediately gives:

s . fsafe'
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Now, since f_= f by Theorem ©, (f_denotes the least fixpoint of 7), and

since f - is an inncermost computed function, Theorem © shows that

—-— w0
S 2

rsafe
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CONCLUSTION

In this work, we have presented a model for 'recursive definitions'
which enabled us to prove genersl results on the relation between
camputed functions and fixpoints, and we have given some fixpoint
computation rules for a certain class of recursive definitions.

We now suggest some possible directions in which further research

could possibly extend this work:

a) In Chapter 5, in addition to the standard innermost computation
rule we gave a wide class of computation rules, the safe innermost rules, which
also lead to the least weak fixpoint of the (monotonically structured)
recursive definition. We have given no such rules for the least strong
fiwroint, in addition to the full computation rule. There is clearly
a need for such rules, and as a matter of fact Vuillemin (1972) has
recently found such rules, which he calls "safe computation rules":

he also gives conditions for such a rule to be optimal.

b) The domain D' of our interpretation has a particularly
simple structure: the partial order on D+ has only two levels so to speak,
with  being less defined than every element in D, and every element
in D only related to itself,

It would be interesting to see how the computational part
of the theory extends t- domains S with a much richer structure, for
example partially ordered sets which have a least element and are chain-
closed (in order to guarantee existence and cood properties of fixpoint

of cortinuous functionals).

1o¢



() Scott ‘1 X)) presents a mathematical theory of computation
of higher tvpes of objects. He suggests that it would be worthwhile to
establish that the cumputable objects 1n his sense are also computable in
the usual sense of Church's Thesis. The present work establishes the
fact for objects of low types (partial functions and functionals). It
might be of interest to investigate if and how the computation methods

presented here could be extended to objects of higher types.

d Syntactic extensions of the 'recursive definitions' might be
interesting to investigate. For example, we might consider an
expression ot the form:

oF%) = o(F,X)
where .. and ¢ are two arbitrary terms, to represent a recursive
definition. 1In the case where such detinitions possess fixpoints,

is there a general computat on mechanism that will compute one ‘or

several) of them;

lL‘l



. — - =4 R ..., W

] - R e T

APPENDIX I
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A, Introduction

In this Appendix, we derive fixpoint properties of monotonic
and continuous mappings over partially ordered sets. We then
apply these properties to sets of partial functions, after
verifying that these sets indeed satisfy the required conditions.

The first result on monotonic¢ mappings is a slight general-
ization of a result mentioned in an unpublished paper by Park
‘1//C). The result on continuous mappings generalizes a
Theorem due to Kleene (1 +47). The second result on monotouic
mappings is a mild gencralization of a result due to Tarski
'1+.°). Our proof follows that given by Park (1%9), Bekié

1» ) and Scott '17/0) contain related work.

B. Partially ordered sets

B.l General Definitions

An ordering on a set M (or partial ordering on M)

is a binary relation vu M, denoted <, which is:

‘i)  reflexive, i.e.: VY XM, x « x ,

(ii) antisymmetric, i.e.: VX, y €M, x « y Ay < x =x =1y,

(iii) rransitive, i.e.: VX,y,2 C M, X « YAy < 2= X < 2

A strict ordering on M (or strict partial ordering

on M) is a binary relation on M, denoted <, which is:

(i) strictly antisymmetric, i.e.:

Y%,y E M.x <y Ay < x is false,
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(ii) transitive, i.e. Vx,y,z € M, x <y Ay <z=x<2 .

It 15 easy to trausform a strict ordering on a set M into
an ordering on M by adding the pairs [ -x, x - | x ¢ M} and,
vice-versa, to obtain a strict ordering from an ordering by

removing the pairs [ x, » | x ¢ M},

In the sequel, we will be mostly concerned with orderings
and ordered sets.

An ordered sct, or (partially ordered set is a pair

)

M, « , where M is a set and « 1is an ordering on M. When
no contusion can arise, we simply denote an ordered set
M, by - M.
An ordering on a set M is total if:

u,v ¢ M, x « y ory < x holis,

Let M, - . be an ordered set, and K ¢ M be a subset of M.
The restriction of « to K is also an ordering on K. K is a

chain in < M, - when this ordering is ! >tal.

Let - M, <« be an ordered set and A - ¥ be a subset of M.
We say that an element u € M such that:
YVa € A, a <u,
is an upper bound of A in M. If, in addition, u € A, then u is the

greatest element of A. There can obviously be only one greatest element

of a set.,
Simjilarly, if there is an element [ € M such that:

VYa €A, /< a,
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then ¢ is a lower bound of A in M. 1f, in addition, / € A, then [ is

the least element of A.

when the set of upper bounds of A in M has a least element

we say that it is the least upper bound of A in M, and we denote it

lub(A). Similarly, when the set of lower bounds of A in M has a

g reatest element, we say that it is the greatest lower bound of A in M,

and we denote it glb/A).

When an ordered set <M, < is such that every chain in M has

a least upper bound, we say that it is chain-closed.

B.2 Monotonicity, Continuity.

Let f be a mapping over M (i.e. a mapping of M into M).
For every subset A = M, f(A  denotes the set {f(x) | x € A}.

An element m Cc M is a fixpoint of f if it such that
m = f(m). When the set of fixpoints of f has a least elerent, we

say this least element is a least fixpoint of f{ (necessarily unique).

Let <M, < = be an ordered set. A mapping f over M is

monotonic when:
Y%y € M, x <y = f(x) < £(y) .

Let <M, < > be an ordered set which is chain closed.

A mapping f over M 1is continuous when, for every chain K ¢ M,
f(1lub(K)) = lub(f(K)) ,

where this is interpreted as meaning that the right hand side must
exist and be equal to the leit hand side.

As we noted in Chapter 4, continuity - monotonicity.




B.3 Ordinals.
In order to prove the first Theorem in the next section, we
need a few clementary properties of ordinals, which we briefly recall
here, referring the reader to standard texts for a complete treatment.

(See for example: Halmos 140 | Suppes '1x .

We denote the 'strict) total order relation on the
ordinals.

An ordinal 4 is the set of its predecessors in that
relation. An ordinal can be either O, or the successor of another
ordinal  (denoted 4 + 1: in that case, every ordinal smaller than

a + 1 is either o or smaller than o), or a limi* ordinal.

Let ¢(«) denote a property of an ordinal o. If there is
an ordinal ¢« such that «(,), then there exists a least ordinal 8

such that ¢ g8). (Least Number Principle)

The following induction principle, called transfinite

induction is valid on the ordinals:

If for every ordinal o, ¢(B) true for every B < o

implies (o), then o, holds for every ordinal .

Cardinals arc representatives of equivalence classes among

ordinals, denoting their size. To every set A there is a cardinal
number associated, denoted | A |» which is an ordinal equivalent to A,
where equivalence here means hiving the same size. Given any cardinal,
say | A | for some set A, there is another cardinal strictly greater
than it, namely 2|A| = | SA) l,which 1s the cardinal of the power set

of A,
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B.4 Least Upper Bounds

In this section, we consic r partially ordered, chain-
closed sets with a least element .

Bl )L Monotonic Mappings.

We establish that every monotonic mapping over
such & set has a least fixpoint, and give a characterization of that
fixpoint when the mapping is continuous. The partially ordered set

will be denoted < M, « -, or M for short, and its minimal element (.

Let f be a monotonic mapping over M.

In the first paragraph, we show how to generalize the familiar

Kleene sequence O, f(0), +.., £(Q),... and define £%(Q) for any

ordinal .

In the second paragraph we select one particular fa(Q) in
a suitable way, and call it Sge
In the third paragraph, we show that S¢ is the least fixpoint

of f£.

Definjtion of fCLO) for every ordinal €

We give an inductive definition of fe(Q) by:

Definition:
(1) if e =0 then f(q) =q }
(11) if € = § + 1 then £5(q) = £(£3(q)) ;

(111)  1if ¢ is a limit ordinal, then £°(0' = lub{f¥(q) | o <€} .

We will give here a justification that this definition indeed

uniquely defines fe/g' as an element of M for any ordinal €, and
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that this mapping is monotonic, in the sense thit g 7 v = fB/Q) < fy(Q).

Justification: We prove that, for every crdinal ¢, the property

¢VG\ holds, where:
N ] 2 o 8,\ GRS
wlc £ /) is well defined and, Yo < ¢, £7(0) < £ (Q)" .
The proof is by transfinite induction, i.e., we assume «(y) for every
a <€ and prove .¢
Three cases arise:

8}

(). =0 A is well defined, and there is no ordinal < O, so

the scceond half of -(0) is vacuously true.

(ii) ¢ = & + 1.
Then ) = £(£%(()) is a well defined element of M ,
since 1+ ([;) is a well defined element of M and f is a
mapping over M,
Now let & < ¢, show fB () < fe’a‘). Since ¢ 1is the
prcdecessor of €, we have B < & , and we know that
~" ¢} holds.
We can distinguish three cases: =0, g =5 #0, B < §
(a) g =9
Then fB(Q) = ) and, since O 1is the least element of M,
o < £€(Q) trivially.
(b) B=6#0.

Then & has a predecessor vy, and we have:
£¥(0) < £9(0), by of6) .
By monotonicity of f, we have:

£(£¥(0) < £(£5(q)) ,
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§ =yv+1land € = § + 1.

(e) B <6
In this case, we know fB(Q) < fB(Q) by ©(6), and
we have established fs(ﬁ) < fe’ﬁ) in cases (a) or (b).
So the property follows by transitivity of «.

(i11) € 1is a limit ordinal.

Then fe(&\ = lub{f%(q) | o <€},

We want to show that K€ = [£(0) | « <€} is a chain. Let

a,p < €. Since the ordinals are totally ordered, we have either

o <B orpB<Ig or g = 8. By inductiun hypothesis we know that
»(a) and ¢(B) hold. Therefore, if « < g, we have £¥(Q) < £8(Q);
if B <a, fB(n) < £f%Qq), and of course, if B = o 5 () = fa(ﬂ),
hecause of well-definedness, hence f*(Q)) < fB(Q) because of
reflexivity. Hence the order 1s total on Ke, and K€ is a

chain, Since M 18 chain closed, lub(Ke) is a well defined
element of M, and so is fe(ﬂ).

Now the second part of ¢(€) holds trivially, because if g < ¢

then fB(Q) € X€ and therefore:

fB(Q) < fe(Q), since fe(ﬂ) is an upper bound of K_.

So ¢(€) holds for every ordinal €, which justifies the
definition of fe(o) and proves that:

for every ordinal g,y: g<y = fB(Q) < fY(Q) .
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Construction of Sge

The key point is that the fefﬂ) that we have defined in the
previous paragraph cannot be all distinct. Indeed, since £500) e M
for every ordinal <, there cannot be more distinct fc’Q) than there
are distinct elements in M. If we take © sufficiently larce so that
its cardinal is greater than | M [, then there must be two ordinals

. P | G .

o,B < € such that f () = £°(Q). 7t is enough for this to take an
ordinal equivalent to &M), where &M denotes the power set of M.
For the purposes of this discussion, let us call conjugates any two
distinct ordinals ,8 such that fdif' = fB-Q), and let Plg) be
the property 'y has a conjugate'. We know that P(c) is true for
the € that we have taken above, and therefore, by the least number
principle, there must be a least ordinal tnat has a conjugate. Let
us denote it Cge

€
: f ; :
Then we set 8, = £ ({)) and this completes our construction of

{

Theorem.

If M 1is a partially ordered, chain-closed set, which has a
least element, then every monotonic mapping over M has a least
fixpoint.

Proof. Let 1 be¢ a monotonic mapping over M. We prove that

s as defined in the previous paragraph, is a least fixpoint of f.

f’

(a) s is a fixpoint of f.

5 8 .
We have s¢ = f "(0)). We want to prove Sg = f(sf),
< Ce+l
o) = £

iokes E (An). Let ) be a conjugate of G
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€t x
We have f *(Q) = £*0Q) and €<

If % =€_+ 1 we are done.

£
Assume ) # €, *+ 1. Then €.+ 1 <. Therefore, we have :
€ € +
£ fo) <« £ 5 Ya) < £Na) .
€
But f)(L) = f f(.), so,by antisymmetry of <, we get :
Ef Ef +1

f () = ¢ () s

(b) S¢ is the least fixpoint of f.

Let m be a fixpoint of f. We want to show S¢ < m,
To prove this, we will show that, for every ordinal ¢,

fC(Q) < m. The proof is by structural induction.

(1) € = 0. Trivial, since Q <m for any m € M.

(ii) € =§ + 1. By induction hypothesis fG(Q) < m,

By monotonicity f(fs(Q)) < f(m).

Therefore fe(Q) <m, since€ =5+ 1 and m is a fixpoint of f.
(iii) € is a limit ordinal. By induction hypothesis,

Yo <€, f£%Q) <m. By definition of £5(Q), we have

£5(

Q) = lubK_, where K_ = (£%@) | o <€}

By induction hypothesis, m is an upper bound of Ke’ and
therefore fE(Q) < m.

In particular, if we take € = 8¢y we obtain:

S

8, = f f(Q) < m.

B.i.2  Continuous Mappings.

If the monotonic mapping f that we considered
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in paragraph B.4.l1 is now continuous, the least fixpoint has a much
simpler characterization than before. 1In fact we have :

Theorem:

If M is a partially ordered, chain closed set which has a
least element [, and if f is a continuous mapping over M, then the
least fixpoint of m is lub{fi(ﬂ) l i nonnegative integer}.

Proof: The results of the previous scction apply since if f is
continuous it is monotonic.

We have shown that, for every fixpoint m of f and every
ordinal g, fa(ﬂ\ < m,

In particular, if s is the least fixpoint of f, for every

f
non negative integer 1, £ o) £ Sge

The first infinite ordinal is y, where w= {1 , i non negative integer]
={i|0sxgi«<yl,
and we have also fY) < s¢» where, by definition of £’():

£2(0) = 1ub f£5(0) | 0 g1 <y .

Let K = {fi(p) | 0 <1 4l. By continuity of f, f(lub(K)) = lub(£(K)).

We have:

1

Wwb(£K)) = ubfst T 1) | 1+ 13,

But f(K) = {fi(r) | o<1 <y}

and therefore 1lub (f(K)) = lub (K).

Hence : lub(K) = f(1lub(K)),

which means that lub(K) = £Y(()) is a fixpoint of f.
Hence S¢ % )

Therefore ¢ = ) = 1ub[f1(q) | i non negative integer}.
]
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B.5 Greatest Lower Bounds

1f the partiallv ordered set M now has the property that
every nonempty subset of M has a glb in M, then monotonic mappings

over M turn out to have another interesting property:

Theorem:
If M is a partially ordered set in which every nonempty subset
has a glb in M, then every monotonic mapping f over M which

has a fixpoint has a least fixpoint S¢ which is such thet:
s; = glb fmeM | £f(m)<m]} .

Proof: This proof essentially follows Park (1969) in his proof of
the Knaster-Tarski theorem. Since f has a fixpoint, the set
Cf =meM| £f(m < m} 1is not empty, and has a glb. Let us temporarily

denote 1f = glb(Cf).

a) 1f is a fixpoint of f;

For every {¢ Cf, we have 1f < { and, by monotonicity of f,
f(lf) < f(1). But f(2) < { since 1 € C;» and therefore

f(lf) < 1. Hence f(lf) is a2 lower bound of C therefore:

f’
£(1,) < 1. (1)

By monotonicity of f, we get from (1) that f(f(lf)) < f(lf),

which means that f(lf) € C,.
Hence : 1f < f(lf) . (2)

(1) and (2) imply that 1f is a fixpoint of f.
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‘b) 11 is the least fixpoint of f:

We know that { has a fixpoint, SO the set of its fixpoints
is not wvapty and therefore has a glb which we call temporarily

m We do not know yet that m_ is a fixpoint of f).

o {
Since the set of fixpoints of is included in Cf, the glb's
of these sets arc in the following relation: 1f < mf.
But, by ‘a’' above 1f is a fixpoint of f, hence me < lf.

Therefore we have: 1{ = m{ \

il

A sufficient condition on M for a monotonic f to have
a fixpoint was given in R.., namely that M be chain-closed and have

a least element.

This previous theorem provides an clegant proof for the following

corollary:

Corollary Let M verify the hypothesis of B.7, and let f;,f,

be two monotonic mappings on M with fixpoints. Call s1 and s, thelr

-

least fixpoints. Then if /¥m € M f,(m) < £, m'] then ) < S,-

Proof. From the hypothesis, we have in particular :

f1 (SHK < f?(Sz) :

But £ (s ) - 8. Hence By %) €8, ¢

Hence S8 € Cf . and, therefore S, « S since Sl = glb C
] 1
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Cr Partial Functions and the Extension Relat ion

In this section we show how the set of partial functions
from a domain S into a range R can be partially ordered by the
extension relation, and we apply the results of Section B to this

Structure.

G5 1 Definitions
Let 5, K be non-empty sets and  be an element not
oy
in R, representing the "undefined" element. We denote RUfy} by R .

+
A partial function of 5 into R is a mapping of S into R . We

denote pf S --R) the set of partial functions of S into R. We
abbreviate pf(S -+ S) by pf'S) and we call a partial function of
S into S a partial function over S.

It f ¢ pf'S .R), we say that S is the domain of f:
for every x € S, the image of x by f is denoted f(x);: we denote
= the equality relation on R+; if fix) = 4 then f is said to
be undefined at x, v f %) is said to be undefined); if
fix) # 4, then { is said to be defined at » (or () defined) ;
if f 1is defined for evvery x ¢ S, then f 1is said to be total;
if f 1is undefined for vvery x ¢ S, “hen f is the undefined function,
denoted 0.

Let f,g ¢ pf(S - R). Then:

(a) f and g are said to be equal, denoted f = g,
iff, yxe€ S, f(x):=gx). [i.e., efther both f(x) and g(x) are

undefined, or they are both defined and equal as elements of R].



(b) g 1s said to be an extension of f, denoted f < g,
iff, v¥x¢ S, f(x) F o = f£(x)=gx). i.e., wherever f(x) is
defined, g(x) must be equal to it, and therefore also defined).

Note that f = g 1iff f<g and g« f.

[An equivalent way of defining the extension relation is
+
to introduce a partial ordering « on I by:

F
WweR, y<y andy«<y,

and then to say that:

vf,g € pf(S »R), £« g ( g is an extension of f) o ¥ x € S ,f(x) < g(x)].

The cxtension relation is easily seen to be:

(1) Reflexive (i.e. V fe pf(s .R), f«< f ;
(ii) Antisymmetiic (i.e. vf,g ¢ pfS R), f<«gandg< f=f =g);
(111) Transitive (i.e. ¥f,g,h ¢ pf/S -R), f« gand g<h= f < h).

Therefore, < is a partial ordering on pf(S —R).

We are now going to study tho properties of pf(S - R)
partially ordered by «.

c.2 Properties of sets of Partial Functions

pf(S —~ R, has a lcast element

It is immediate that ¢, the totally undefined partial
function, is a least clement in pf(S - R), i.e., that :

vf ¢ pf(S -»R), n < f.

136



pf(S -. R} is chain-closged:

Prooi: Let K < pf S -.R  be a chain. Let fl’ f. S
and let x ¢ S be such that fl and f are both defined at »x. Since
« is a total ordering on K, we must have either fl = "
o & 11. In either case, f] il i ek Y @il IS |e

Using this propesty, we can detine a partial function UK in

pf(S - R) as follows:

e § - U, (= ’if Jfr v such that f'x) # , then f(x

otherwise |
Because of the opening remark, if there are several f's in K
such that f/», 7 ,, it docs not matter which one we pick to define

Uy x, since they have all the same value at x .

We want to show LK = lub k)

(a) UK is an upper bound of K.

Let £ K and =« ¢ S. Assume 1§ x' # . Then,by detinition of

UK, UK X fix). Therefore:

(B L, s the least upper bound of K .

Assume g is an upper bound of X. Let + £ S and assume

UK’xf # w. Then, by detinitiom of UK’ there exists f ¢ K such
that fix) £ 5 and Uy’x' t » . Since f - g, we also have

f(x) - g/x). Therefore U, - g.
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_ _ I i g, o 3, . o . P T —

¥
Every noun-empty subset of pf/S —» R) has a glb-/

Proot: Let M g pf(S —R), M # ¢.

Let us define ‘H x) € pf(S -»R) by:

if 3z € R such that /v f € M)(f(x) = z) then =z
Lag) = !

o L otherwise .,
IM is a partial function from S into R, where M f ¢, because the

z of the definition is then unique.

We show that IM = glb/M):
(a) Ly is a lower bound of M.

From the definition of 4, it follows that, if lM(x\ is defined, then
v fecM, ifo' = f(x). This implies that v f € M, by < f-

(b) by is the greatest lower bound of M,
Let ’ be a lower bound of M. Let x € S and assume {(x) # w. For
every f ¢ M, we have ! « f, and so f(x) = f{x). Therefore there
exists a 2z as required in the defini-ion of £M(x), namely

z = j(x). Thus IM(X) = f/x). Thic implies ! « Iy for every

lower bound : of M.

Therefore we see that pf(S —» R) structured by the extension
relation verifies all the properties that we need in order to apply the
fixpoint theorems of Section B.i. and B.>. We will cal! ~ mapping

over pf(S - R) a functional. Combining the three resuits,

For | R l > 1, the empty subset of pf 5 - R) does not have a greatest
lower bound in pf(S — R), because thcre is no partial function in pf(S = R)
that is an extension of all the others. In fact, this is the only property

that pf(S - R) lacks in order to be a complete lattice, (since it is sufficient,

for an ordered set to bc a complete lattice, that every subset of the set
possess a glb). Scott (1370) structures pf(S - R) into a complete lattice

by adding a "top' element, which he denotes T, extending < by yf pr(S-;R)U{Rq,

f < T. Then T= glb(®). But this is unnecessary for our dievussion in this
work.
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we can state:

Theorem: Every monoionic functional «+ over pf(S - R) has

a least fixpoint §_ which is equal to glb{f ¢ pf(S - R) | (f) < f}.

1f, in addition, -~ 1is continuous, then:

s = lub {fifd) | i non n:gative integer)

(o

Cl B Properties of Sets of Monotonic Partial Functions

1f we have a partial ordering on S, which we denote <,
and if we take the natural partial ordering < on R+ defined by:
¥y € R+, w<y and y <y, we have the natural definition of
monotonicity, namely f € pf(S —» R) 1is monutonic when:
¥x,yc€S, x<y = f(x)«fly.
Let us denote mf(S — R) the set of monotonic partial

functions of S into R.
We are going to show that mf( § — LK) also satisfies the

basic properties needed to apply the general theorems of part B.

mf(S —» R) has a least element

r; 1is obviously monotonic, and is therefore the least element of

mf(S —-R).

mf(S -+ R) is chain-closed

We will show that if K is a chain of monc onic partial functions,
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the lub VK of K in pf(S - R) is monotonic, which implies that

\

mf/'S -+ R is chain-closed.

We have seen in section C.” that:

If 3f € K such that f(x) # w then f(x)
vyxeSs :U(x) =
K
otherwise ¢ .

Let x, y € S such that x <« y. Assume Uy’xj is defined. Then there

is an f in K such that f(x) = Uy x) # y. Because K cmf(S - R), f
is monotonic and thercfore f(x) = f'y) / w. Hence, applying again the

definition of y» We see that U y) = fly) # we

Therefore we have Uy x) f o= UK/x) = UK(y:,

f.e. U %) % Lh'y , which shows that U, € me(S - R).

Every non-empty subse¢t of mf/S -» R' has a glb in mf(S — R)

We show that 1/, E) = if 32 ¢ v uch that (v f € M) (f(x)=z) then z
otherwise

is monotonic.

Let x, y € S such that x € y. Assume IM'x\ # w.

\

Then v fe M, f/x) iM'Y # © . Since every f in M is monotonic,we
also have:

teMm, f (x> = f(y) f w .
Hence, by definition of I £M y) = LI which shows monotonic.ty of

1 3

M.
Therefore mf’S +R) satisfies the hypothesis of the theorems of

Part B, and, combining the results, we can state:
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Theorem: Every monotonic functional + over mf’S - R) has a
monotonic least fixpuint s which is equal to:
glb [f c mffS - R) | +(f) < £},
1f, in addition, -~ 1is continuous, then:
s = lub f -ri 7)) | 1 non negative integer} .
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A, Introauction

In this Appendix, we extend the model and the results of Chapters
2 - 5 to systems of recursive definitions. We show how all definitions
can ve extended in a natural way so that the results valid for single
recursive definitions possess analogs which are valid for systems of
recursive defiritions; these reduce to the previous ones when the system
reduces to a single definition. The extensions are rather straight -
forward except for the notations which unfortunately tend to obscure

the simplicity of the results.

B. Extension of the Model of Chapter 2

In order to express systems of recursive definitions, we need
a straightforward extension of the alphabet and terms of Chapter 2.

The alphabet is extended to include k function veriable letters, Fl’

FQ, 0 A.0g Fk, and the terms are constricted in the sume way as in

f 2.2.2 except that ~.».2 (v) is changed to: "If Ty weey 7 are

terms, then Fj (11, cers 1) is a term, for every j, 1 < j < k. '

Such terms are now denoted by . F,x),z F,x , ..., =y

#(Fg) s ~obes.,

The definition of substitution in £ 2.2.: is triviall, aeralized

for these terms. The definition of interprer.iions in , 2+3.1 need not

be modified.
The weak and strong values of terms arc easily genervalized in
the following way:

(a) Weak Values

Given a k-tuple T 4 000 fk of partial functions

15
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I

fg € pf (D), 1<)k, and an n-tuple = = < 7, ...,e ~ of elements

+ at
gLE€L Y fd}, the weak value of a term o for T = f and
X = E , denoted E(E,;), is defined inductively as in % 2.%.2 (a),

except for case (v) which is modified as follows:

"if o = Fj(al, ...,anj for some j, 1 € j < k, then:
- if the vector <7 /f,;), o i) | ’f,g)/ does not belong to

1 n
+ =~ - -
(0", then T (£,8) = d,
- otherwise, if, for some i, l= i < n, ai(f,F) = y, then
@ (£,8) =

- otherwise, 7(f,F) = fjfgl (f,8), ...,E;’f,?)).“

(b) Strong Values

ERRRE fk ~ of partial functions

+ -
fj cpf ), 1< j< kand an n-tuple * = < Frreeesly = of

elements £ € 2 U fd}, 1 <1 < n, the st-ong value of a term

- = - - ~

o for F=f and x = ¢, denoted 4 ’E,E) is defined inductively as in

Given a k-tuple f = - f

~

£ 2.3.2. (b), except for case (v) which is modified as follows:

e ao® Fj(o'l’ P %) for some j, 1 <« j =k, then:
- if the vector (T:h(f,;), ...,';h(E,E) > does not belong to
+ x5 =
(p")™, then {f,E) =

- otherwise: i&f,?) 5 fj(?&(E,E), . %; (f ;))

Comments similar to those in % 2.3.5 may be made regarding the

relations between the two types of evaluations. In particular, for every

k-tuple Psed «es, £ ~ of partial functions fj € pfn(D), l<sjsk,

2" k

ihk

WL AL r e iaunienngeotih S it



n s
and for every F b, we have, for every term »/F, x

-t -
where f , natural extension of f  is defined by:

Correct terms are defined as terms whose strong values always belong to
+
A+ and compatible terms as terms whose strong values always belong to D ;
»

the formal definitions are straightforward extensions of those in

‘. 2.3.2.

A system of recursive definitions will be a system of the form:

AT |
Pl\x) :

"
5]
-
x

i

7 ’
_Fk\x) = 7 (F, x,

where there is exactly one recursive definition for each F_,

1 <j - k, and where each wj, 1 <3k, is a compatible temm.

We abbreviate such a system by the notation:

Fixpoints of such systems are defined in ' ¢ followirg way,

which 1is a natural generalization of the definitions of
B BBl

(a Weak Fixpoints:

A k-tuple fF=< fl, e fk - of partial functions

fj € pfn'D\, 1 -j<-k, is a weak fixpoint of a system of



recursive definitions F (x) <= 1 (F, x) iff:

voE @ D, vio Lix gos e fj(gi :H(E, e)
(b) Strong lixpoints
A k-tuple £ = fl’ 30100 fk of partial functions

fj € pfn(D+), 1l < j <k, is a strong fixpoint of a system of

recursive definitions, F (x) <= 7 (F, %),
8fete:

. + E sl 3
vEe (o) vi, L)<k, £,(¢) = 7y(£, €) .

It is convenient to associate functionals to a system of

recursive definitions, or, more generally, to a k-tuple of correct

o~

. . ; o=
terms. Let us show, as an example, how to associate a functional 4 to

a k-tuple @ =gy e o > of correct terms.

H *
ﬁ? will be a functional mapping an element f of(D+)n —>(D+)k-—/

~
~

into an element & [ f] defined as follows

Let f = fl, obkes fk* be or element of (D )" -o(D+)k,
+ +
where, for every j, 1 < j <k, f, 1is an element of (D ) sp = pfn(D+),
& = = s +
then of f] maps every € ¢ (D ) into o [f] (f) ¢ (5 ) defined by

Q12

[E](;:):/'E;l (E’ %)) "')Ek(f’ E) > ’
where, for every j, 1l < j < k, EG(E, ;) is the strong value

of o, for F=Ff and x = E s

3

*
—/ We use the notation ' Sn—»R' to ge ote the set of mappings of §
into R. Nﬁtlce that (D ) = [ ) is trivially isomorphic to

[pf (D )
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1f & is a k-tuple of campatible terms, then is simply

+ AT
a functional over i 1f we take a system of recursive
definitions F (x) = - (F,x), in which
¥ =g Tyr eees T then 7 is a k-tuple of compatible terms, and

it is clear that a strong fixpoint of the system, as we have

A

defined it above, is equivalently a fixpoint of the functiomal

A completely analogous discussion can be carried out for the

weak fixpoints.

We now need to generalize the definition of computations of

"

7 2...2, to systems. An elementary computation of a term o(F,x)

- - + n . . —re
for x =c < (D , using a system of recursive definitions

- - - -
\

F (x)= - [F, %) is a scquence of teims f)i, i 2 01 such that:
= A/

fa) =, F,CA

(/(

(b) For every 1 =1
=
= @ ( ; , : : -
either (bl): 7141 c Sv LT where @ is free of x,

and the equation :

o1 e = 4+ +
a(f, ) a7 e holds for every f € (D W (B )k
- or (b
Tj/i’ z
41 c S e oy for some j, 1 < j <k .,
}ja\

¥ - - =
——/ The detinition of , F,g) where g is an n-tuple of terms is
a straightforward adaptation of the definition given in 2451,
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The definitions of computations, terminating computations and

innermost computations are easily transposed from those in Chapter 2.

N . +.n
A computed function over ‘D ) of a system of recursive

s = S R o + +
definitions F(x)~- (F,x) is any f ¢ (D 2 a )k such that,

. +
for every c¢e (D )" and every i, 1 < j < k:

(o} ]

(i) if

for x = ¢, using the system of recursive definitions, which

s ’ -
# v, then there is a computation of Fj(xl

terminates with fjré);

~

(o]
»

(i1) if fj’

for x = E, using the system of recursive definitions, which does

w, then there is a computation of Fj(i)

not terminate.

Similarly, one defines a computed function over D" by substituting

n +.n : :
D* for (D )" everywhere in the above definition.

Cx Analogs of the Results of Chapter %

With these definitions, all the results in Chapters * - 5 are

easily translated into results for systems of recursive definitions.

* - + +k .
3/ ik @l (D )n <5ty » for every j, 1 < j <k, fj is the partial
+ % =
function of pfn(D ) defined by: v ¥ ¢ (D+)n : fijg) is the j-th
3 % +
camponent of f (¢) ¢ (D )k "j-th projection

L8



For examnple we have:

‘a’ Theorem 1: For every system of recursive definitions,
every strong fixpoint ‘s an extension— of every computed function
+. 1

over (D ),
To prove this, cne applies the same techniques as in
Chapter ? to cach component Fj x'. All the preparatory lemmas of
§ 3280, % 5.2.2 - dad o Ao apply with the obvious change of
n + k

5 U +
notations: F into F, pfn D into 'D - D RN (2

=

'b) Similarly, the lemmas and Theorem o of section 7.3
concerning innermost computed functions and weak fixpoints

extend immediately to systems of recursive definitions.

D. Analogs of the Results of Chapter .,

The study of monotonicity and continuity for systems of
recursive detinitions procecds along the lines of Chapter L, except
. 2 it i F )
that it is better to regard ‘D v LD as a partially ordered
set with the appropriate properties and apply the gencral theorems of
Jio1l to it rather than to try tu regard it as a set of partial

functions.

The notion of a monotonically structured system of recursive

definitions is the same as in the casr of a single recursive

definition® the viveu functions must be monotonic.,

y / 8 B +.n + k -
—1f f, v are elements of 'D°)" - "D " we say that g is ar

v

extension of f , denoted  f - §, if and only if: ¥j, 1 ¢ j s

fj % 81 where fj and gj are the j-th projections of { and . 5

TR
which arc¢ c¢lements of pfn )

1.9



Then, for monotonically structured terms, the lemmas of 7 L,.2.2 |

%5, ok o amd N.9h gonsgrning mbnstonfeivty and santinulity carry
over to the case of scveral tunction variables without any Jdi riculty.
, ; 2. 10} ; n r ok
The relevant partial orderings AR and D -, 'D
are extension orderiugs denoted «  and defined 'n the following way:
s £ . #.n N ST _
Wb e 1D M U ity N 12l ¢ VE 3§
i J ]
= o n * ik = el | n
Y5, &0 =D ) rftg RV Llesjsh, $. L€ s
f ] |
k4 g - : .
In fact the functionals - and - associated with a monotonically

structured system 0! recursive definitions also have properties of mono-

tonicity and continuity, from whi:ch the analogs of Theorems 3 and
follow directly. Let us go into some detail for the derivation of
the analog of Theorem “:

Let F'x, =~ F,x be a monotonically structured system of
~y
recursive definitions. Then we first show that - is a monotonic

; . ; +.n
and continuous mapping over the sct of monotonic mappings of /D )

-+
i.e. over m&n 9] k. The arguments follow thosc of * ..%,2. and

#L,7L., using in addition the fact that - 1is monotonic resp.

continuous) iff for every j, Ll < j < k, ?j is monotonic ‘resp.

continuous, .

o4

- (D

r { A} k
Then one shows that the set M = mf (D has 2 least element,

EZUCh o , and is chain-closed.

.

The analog of Theorem ° now follows easily he application of the

general Theorems of - L..,1, 1t says that:

"hvery monotonically structured system of recursive definition

150
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Fix) on +{F, »x) has a monotonic least strong fivpoint,

3
o 3
%

In addition:

A, 5. N T
f = lup ¢ -1 MR, I

>

The analog of Theorem L, concerning the least weak fixpoint

is also true,

Bs Fixpoint Computations for Systems of Recursive Definitions.

Finally, the fixpoint camputations which we have seen in

Chapter % can be vasily cxtended to compute the least fixpoints
¢ :
f and f~ of a monotonically structured system of recursive

definitions.

The standard simplifications need no modification. Also, if

» 1s a monotonically structured term free of = such that :j‘, )= &
for somc¢ a s 4, then Simp 5 = a. Analog of the last lemma of ¢ 5.2)

~

The full substitutions are casily extended to terms with several

tunction variables' the inductive definition of Fsubst_ {1, will be
identical to the one in -5+l except for case V). which becomes:
LA

if =¥, Tpr v a s for some j, 1 <« j « k, then:

Fsubst |, = 5 F, Fsubst_ ‘ql), ev+, Fsubst_ qn) Yo

¥ 7
The important lemma of * ¢ .7.] has its analog here, which can

be expresscd, fo; vxample, in the following way:

"For eny correct term ~ and any k-tuple - of compatible terms,



for any f pf (D , £ € (D}

QU

)
]

: ! - = - - +
The full camputation ot a term 4 F,x§ for x = ce (D )n using

a monotonically structured system of recursive definitions F §’A537F,§)

will be a sequence ot terms vy such that:
o = Of'I.F)i) ’

and, for every p . O:

“optl = Simp o5 ),

{ N
7 pt. FSubSt: g_2p+1 S

These terms have the property (analogous to the first lemma of

£ 5.3.3) that:
B o i ot B
:f & pfn'D s HP 20O
] I. ) zA f‘ \ G 'l :D '-1 \ ".
Ay’ b @ p41 a, £i,

Then the analopy of tine second lemma of ° .7.7 also holds.

It says:

"Let - be a monotonically structured correct term,

S 7 -

Fix) = -F, x) a monotonically structured system of recursive

.+ n
definitions, and let c e (D . Then, the full computation of

for X=c using the syster terminates with @
~
Ay
~ 7, = ./’\\' A
~ = - . 0 3 ~ = =,
W2f 2 (.5 a; it does not terminate iff 5 'f ,¢) = 4. (T is the
z = 7

least strong f izpoint of the system ."

The computed function Ec obtained by full computation of the
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system Fix k F.g‘ will be the k-tuple f.

where, for every j, | . | < k, 1& o pln I§] is the partial

function obtained by the full computation of I %) using the system.

J
Then the analoyp vt Lheorem ! says that § = ?-, i.c. the computed
I3 y & P
function obtained by tull computation ot a monotonically structured system

of recursive definitions is the least strong fixpoint of the system.

The definitions and fixpoint properties concerning innermost
computations carry over to svstems of recursive definitions in a similar

fashion:

Parallel Inneimost Substitutions are readily extended by

changing 5...1 v 1o,

Y= F, Qe =i for somé i, 1 ¢ 5 € ki

J

if, for every 1, 1 . i «n, 4, =
Baubsit-— K€ = o [, SOt |

- -n
otherwise:

Psubst_ (¢, = F(Fsubst_ | )s e+ Psubst_ & 7

% E Ii

The definition vt the standard innermost computation is likewise

readily extended.

The computed function fq obtained by the standard innermost

\

computation of the system [ = -, x) will be the k-tuple

of { » where, for cvery j, 1 3§ -k, f € pf .0) is
a

5)1,...’ S)k srj

obtained by the standard inncrmost computation of F /x using the system.
J

Then we have the analogous t the lemma of * 5.,.% and of
Theorem ©. The latter will read, for example:

"the computed function obtained by standard innermost computation




of a monotonically structured system of recursive definitions

is the least weak fixpoint of the system."

Likewise, the generalization of safe innermmost computations

can be done with no special difficulty. The definitions of the

safe simplifications and safe innermost substitutions are unchanged,

since they depend only on the given functions.

The analog of Theorem 7 is again true and reads: "Any computed
function obtained by safe innermost computation of a monotonically
structured system of recursive definitions is the least weak fix-

point of the system'.
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